Land-use and historical management effects on soil organic carbon in grazing systems on the Northern Tablelands of New South Wales

被引:26
|
作者
Wilson, Brian R. [1 ,2 ]
Lonergan, Vanessa E. [1 ]
机构
[1] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia
[2] NSW Off Environm & Heritage, Armidale, NSW 2351, Australia
关键词
PARTIAL LEAST-SQUARES; PASTURE MANAGEMENT; CLIMATE-CHANGE; STORAGE; MATTER; SEQUESTRATION; VEGETATION; TILLAGE; IMPACTS; STOCKS;
D O I
10.1071/SR12376
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
We examined soil organic carbon (SOC) concentration (mgg(-1)) and total organic carbon (TOC) stock (Mgha(-1) to 30cm soil depth) in three pasture systems in northern New South Wales: improved pasture, native pasture, and lightly wooded pasture, at two sampling times (2009 and 2011). No significant difference was found in SOC or TOC between sample times, suggesting that under the conditions we examined, neither 2 years nor an intervening significant rainfall event was sufficient to change the quantity or our capacity to detect SOC, and neither represented a barrier to soil carbon accounting. Low fertility, lightly wooded pastures had a slightly but significantly lower SOC concentration, particularly in the surface soil layers. However, no significant differences in TOC were detected between the three pasture systems studied, and from a carbon estimation perspective, they represent one, single dataset. A wide range in TOC values existed within the dataset that could not be explained by environmental factors. The TOC was weakly but significantly correlated with soil nitrogen and phosphorus, but a more significant pattern seemed to be the association of high TOC with proportionally larger subsoil (0.1-0.3m) organic carbon storage. This we attribute to historical, long-term rather than contemporary management. Of the SOC fractions, particulate organic carbon (POC) dominated in the surface layers but diminished with depth, whereas the proportion of humic carbon (HUM) and resistant organic carbon (ROC) increased with soil depth. The POC did not differ between the pasture systems but native pasture had larger quantities of HUM and ROC, particularly in the surface soil layers, suggesting that this pasture system tends to accumulate organic carbon in more resistant forms, presumably because of litter input quality and historical management.
引用
收藏
页码:668 / 679
页数:12
相关论文
共 50 条
  • [31] EFFECTS OF LAND USE CONVERSION ON SOIL AGGREGATE STABILITY AND ORGANIC CARBON IN DIFFERENT SOILS
    Ciric, Vladimir
    Manojlovic, Maja
    Belic, Milivoj
    Nesic, Ljiljana
    Seremesic, Srdan
    AGROCIENCIA, 2013, 47 (06) : 539 - 552
  • [32] Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types
    Wiesmeier, Martin
    von Luetzow, Margit
    Spoerlein, Peter
    Geuss, Uwe
    Hangen, Edzard
    Reischl, Arthur
    Schilling, Bernd
    Koegel-Knabner, Ingrid
    SOIL & TILLAGE RESEARCH, 2015, 146 : 296 - 302
  • [33] REMOVING GRAZING PRESSURE FROM A NATIVE PASTURE DECREASES SOIL ORGANIC CARBON IN SOUTHERN NEW SOUTH WALES, AUSTRALIA
    Orgill, Susan Elizabeth
    Condon, Jason Robert
    Conyers, Mark Kenneth
    Morris, Stephen Grant
    Alcock, Douglas John
    Murphy, Brian William
    Greene, Richard Sinclair Blake
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (02) : 274 - 283
  • [34] Soil carbon stock and emission: estimates from three land-use systems in Ghana
    Anokye, Joseph
    Logah, Vincent
    Opoku, Andrews
    ECOLOGICAL PROCESSES, 2021, 10 (01)
  • [35] Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity
    Acin-Carrera, M.
    Jose Marques, M.
    Carral, P.
    Alvarez, A. M.
    Lopez, C.
    Martin-Lopez, B.
    Gonzalez, J. A.
    SOIL USE AND MANAGEMENT, 2013, 29 (04) : 547 - 556
  • [36] Estimation of regional soil organic carbon stocks merging classified land-use information with detailed soil data
    Illiger, Patrick
    Schmidt, Gerd
    Walde, Irene
    Hese, Soeren
    Kudrjavzev, Andrej E.
    Kurepina, Nadeshda
    Mizgirev, Alexander
    Stephan, Eckart
    Bondarovich, Andrej
    Fruehauf, Manfred
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 695
  • [37] Global patterns of the effects of land-use changes on soil carbon stocks
    Deng, Lei
    Zhu, Guang-yu
    Tang, Zhuang-sheng
    Shangguan, Zhou-ping
    GLOBAL ECOLOGY AND CONSERVATION, 2016, 5 : 127 - 138
  • [38] Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use
    Chen, Chunfeng
    Liu, Wenjie
    Jiang, Xiaojin
    Wu, Junen
    GEODERMA, 2017, 299 : 13 - 24
  • [39] Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran
    Ayoubi, Shamsollah
    Mirbagheri, Zahra
    Mosaddeghi, Mohammad Reza
    INTERNATIONAL AGROPHYSICS, 2020, 34 (03) : 343 - 353
  • [40] Effects of land-use type on soil organic carbon and carbon pool management index through arbuscular mycorrhizal fungi pathways
    Huang, Beitong
    Zhang, Li
    Cao, Yaping
    Yang, Yurong
    Wang, Ping
    Li, Zhenxin
    Lin, Yong
    GLOBAL ECOLOGY AND CONSERVATION, 2023, 43