Automorphism-invariant non-singular rings and modules

被引:12
作者
Tuganbaev, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Natl Res Univ MPEI, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Automorphism-invariant ring; Automorphism-invariant module; Injective module; Quasi-injective module; INJECTIVE-MODULES;
D O I
10.1016/j.jalgebra.2017.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring A is a right automorphism-invariant right non-singular ring if and only if A = S x T, where S a right self-injective regular ring and T is a strongly regular ring which contains all invertible elements of its maximal right ring of quotients. Over a ring A, each direct sum of automorphism-invariant non-singular right modules is an automorphism-invariant module if and only if the factor ring of the ring A with respect to its right Goldie radical is a semiprime right Goldie ring. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 253
页数:7
相关论文
共 20 条
[1]   Modules which are invariant under monomorphisms of their injective hulls [J].
Alahmadi, A ;
Er, N ;
Jain, SK .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 79 :349-360
[2]  
[Anonymous], 1988, Ring theory
[3]   ALGEBRAS FOR WHICH EVERY INDECOMPOSABLE RIGHT MODULE IS INVARIANT IN ITS INJECTIVE ENVELOPE [J].
DICKSON, SE ;
FULLER, KR .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (03) :655-&
[4]   Rings and modules which are stable under automorphisms of their injective hulls [J].
Er, Noyan ;
Singh, Surjeet ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2013, 379 :223-229
[5]  
Goodearl K. R., 1976, RING THEORY NONSINGU
[6]   Automorphism-invariant modules satisfy the exchange property [J].
Guil Asensio, Pedro A. ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2013, 388 :101-106
[7]   STRONGLY PRIME RINGS [J].
HANDELMAN, D ;
LAWRENCE, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 211 (OCT) :209-223
[8]  
Handelman D., 1975, PAC J MATH, V211, P209
[9]   QUASI-INJECTIVE AND PSEUDOINJECTIVE MODULES [J].
JAIN, SK ;
SINGH, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (03) :359-365
[10]  
Kutami M., 1980, OSAKA J MATH, V17, P41