Dispersive optical solitons with Schrodinger-Hirota model having multiplicative white noise via Ito Calculus

被引:17
作者
Zayed, Elsayed M. E. [1 ]
Shohib, Reham M. A. [1 ]
Alngar, Mohamed E. M. [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ,6 ]
Moraru, Luminita [7 ]
Khan, Salam [6 ]
Yildirim, Yakup [8 ]
Alshehri, Hashim M. [3 ]
Belic, Milivoj R. [9 ]
机构
[1] Zagazig Univ, Mathemat Dept, Fac Sci, Zagazig 44519, Egypt
[2] Natl Res Nucl Univ, Department Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[3] King Abdulaziz Univ, Dept Math, Mathemat Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[7] Dunarea de Jos Univ Galati, Dept Chem Phys & Environm, Fac Sci & Environm, 47 Domneasca St, Galati 800008, Romania
[8] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[9] Inst Phys Belgrade, Pregrev 118, Zemun 11080, Serbia
关键词
Solitons; Multiplicative noise; Ito Calculus; STOCHASTIC PERTURBATION;
D O I
10.1016/j.physleta.2022.128268
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The current work is on the retrieval of dispersive stochastic optical solitons that are modeled by the Schrodiner-Hirota equation with the fiber maintaining power law of nonlinearity. The stochasticity, from the multiplicative white noise effect, leads to the implementation of the Ito Calculus. The phi(6)-expansion scheme yields soliton solutions with the limiting approach being applied to Jacobi's elliptic functions with respect to the modulus of ellipticity. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 30 条
  • [1] The effect of multiplicative noise on the exact solutions of nonlinear Schrodinger equation
    Abdelrahman, Mahmoud A. E.
    Mohammed, Wael W.
    Alesemi, Meshari
    Albosaily, Sahar
    [J]. AIMS MATHEMATICS, 2021, 6 (03): : 2970 - 2980
  • [2] Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Aiyashi, Mohammed A.
    Abdelrahman, Mahmoud A. E.
    [J]. SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [3] Dispersive optical solitons with Schrodinger-Hirota equation
    Bhrawy, A. H.
    Alshaery, A. A.
    Hilal, E. M.
    Manrakhan, Wayne N.
    Savescu, Michelle
    Biswas, Anjan
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (01)
  • [4] Stochastic perturbation of optical solitons in Schrodinger-Hirota equation
    Biswas, A
    [J]. OPTICS COMMUNICATIONS, 2004, 239 (4-6) : 461 - 466
  • [5] Stochastic perturbation of non-Kerr law optical solitons
    Biswas, Anjan
    Ren, Huazhong
    Konar, Swapan
    [J]. OPTIK, 2007, 118 (10): : 471 - 480
  • [6] STOCHASTIC PERTURBATIONS OF OPTICAL SOLITONS
    ELGIN, JN
    [J]. OPTICS LETTERS, 1993, 18 (01) : 10 - 12
  • [7] Propagation dynamics of radially polarized symmetric Airy beams in the fractional Schrodinger equation
    He, Shangling
    Malomed, Boris A.
    Mihalache, Dumitru
    Peng, Xi
    He, Yingji
    Deng, Dongmei
    [J]. PHYSICS LETTERS A, 2021, 404
  • [8] Solitary waves of the generalized Sasa-Satsuma equation with arbitrary refractive index
    Kudryashov, Nikolay A.
    [J]. OPTIK, 2021, 232
  • [9] Solitary waves of equation for propagation pulse with power nonlinearities
    Kudryashov, Nikolay A.
    Antonova, Ekaterina, V
    [J]. OPTIK, 2020, 217
  • [10] Mathematical model of propagation pulse in optical fiber with power nonlinearities
    Kudryashov, Nikolay A.
    [J]. OPTIK, 2020, 212