INFINITE NUMBER OF EIGENVALUES OF 2x2 OPERATOR MATRICES: ASYMPTOTIC DISCRETE SPECTRUM

被引:0
作者
Rasulov, T. H. [1 ,2 ]
Dilmurodov, E. B. [1 ,2 ]
机构
[1] Bukhara State Univ, Bukhara, Uzbekistan
[2] Romanovsky Math Inst, Bukhara Dept, Bukhara, Uzbekistan
关键词
operator matrix; coupling constant; dispersion function; Fock space; creation operator; annihilation operator; Birman-Schwinger principle; essential spectrum; discrete spectrum; asymptotics; SPIN-BOSON MODEL; SCHRODINGER-OPERATORS; BOUND-STATES; SYSTEM;
D O I
10.1134/S0040577920120028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an unbounded 2x2 operator matrix A in the direct product of two Hilbert spaces. We obtain asymptotic formulas for the number of eigenvalues of A. We consider a 2x2 operator matrix A(mu), where mu > 0 is the coupling constant, associated with the Hamiltonian of a system with at most three particles on the lattice Z(3). We find the critical value mu(0) of the coupling constant mu for which A mu(0) has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds of the essential spectrum. We obtain an asymptotic formula for the number of such eigenvalues in both the left and right parts of the essential spectrum.
引用
收藏
页码:1564 / 1584
页数:21
相关论文
共 27 条
[1]   Asymptotics of the discrete spectrum of the three-particle Schrodinger difference operator on a lattice [J].
Abdullaev, JI ;
Lakaev, SN .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 136 (02) :1096-1109
[2]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/S00023-004-0181-9, 10.1007/s00023-004-0181-9]
[3]   On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics [J].
Albeverio, Sergio ;
Lakaev, Saidakhmat N. ;
Rasulov, Tulkin H. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (02) :191-220
[4]  
Albeverio S, 2007, METHODS FUNCT ANAL T, V13, P1
[5]  
Birman M. Sh., 1980, SPECTRAL THEORY SELF
[6]  
EFIMOV VN, 1971, SOV J NUCL PHYS+, V12, P589
[7]  
Feynman R. P., 2018, STAT MECH SET LECT, V0, P151, DOI [10.1201/9780429493034-6, DOI 10.1201/9780429493034-6]
[8]  
Friedrichs K. O., 2008, PERTURBATION SPECTRA
[10]   ON EFIMOV EFFECT IN A SYSTEM OF 3 IDENTICAL QUANTUM PARTICLES [J].
LAKAEV, SN .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (03) :166-175