EXISTENCE OF PERIODIC SOLUTION FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION IN TWO SPACE DIMENSIONS

被引:7
作者
Liu, Changchun [1 ]
Tang, Hui [2 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Changchun Univ, Sch Sci, Changchun 130022, Peoples R China
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2017年 / 6卷 / 02期
基金
美国国家科学基金会;
关键词
Cahn-Hilliard/Allen-Cahn equation; existence; uniqueness; periodic solution; EVOLUTION;
D O I
10.3934/eect.2017012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the existence of the periodic solutions of a Cahn-Hillard/Allen-Cahn equation which is introduced as a simplification of multiple microscopic mechanisms model in cluster interface evolution. Based on the Schauder type a priori estimates, which here will be obtained by means of a modified Campanato space, we prove the existence of time-periodic solutions in two space dimensions. The uniqueness of solutions is also discussed.
引用
收藏
页码:219 / 237
页数:19
相关论文
共 10 条
[1]   Time periodic solution of the viscous Camassa-Holm equation [J].
Fu, YP ;
Guo, BL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (01) :311-321
[2]   ON THE PARTIAL REGULARITY OF WEAK SOLUTIONS OF NON-LINEAR PARABOLIC-SYSTEMS [J].
GIAQUINTA, M ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1982, 179 (04) :437-451
[3]   The role of multiple microscopic mechanisms in cluster interface evolution [J].
Karali, Georgia ;
Katsoulakis, Markos A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :418-438
[4]   ON THE EXISTENCE OF SOLUTION FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION [J].
Karali, Georgia ;
Nagase, Yuko .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (01) :127-137
[5]   On the convergence of a fourth order evolution equation to the Allen-Cahn equation [J].
Karali, Georgia ;
Ricciardi, Tonia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) :4271-4281
[6]   TIME PERIODIC SOLUTIONS FOR A SIXTH ORDER NONLINEAR PARABOLIC EQUATION IN TWO SPACE DIMENSIONS [J].
Liu, Changchun ;
Wang, Zhao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) :1087-1104
[7]  
WANG RH, 1964, ACTA SCENTIARUM NATU, V2, P35
[8]   Time-periodic solution to a nonlinear parabolic type equation of higher order [J].
Wang, Yan-ping ;
Zhang, You-lin .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (01) :129-140
[9]   The Cahn-Hilliard type equations with periodic potentials and sources [J].
Yin, Jingxue ;
Li, Yinghua ;
Huang, Rui .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) :211-221
[10]   Periodic solutions for a Cahn-Hilliard type equation [J].
Yin, Li ;
Li, Yinghua ;
Huang, Rui ;
Yin, Jingxue .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (1-2) :11-18