Some inverse min-max network problems under weighted l1 and l∞ norms with bound constraints on changes

被引:26
作者
Yang, Xiaoguang [1 ]
Zhang, Jianzhong
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
inverse min-max network problem; weighted l(1) norm; weighted l(infinity) norm; bound constraints; polynomial time algorithms;
D O I
10.1007/s10878-006-9016-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider some inverse min-max (or max-min) network problems. Such an inverse problem is to modify the weights with bound constraints so that a given feasible solution becomes an optimal solution of a min-max (or max-min) network problem, and the deviation of the weights, measured by the weighted l(1) norm or weighted 1(infinity) norm, is minimum. In this paper, we present strongly polynomial time algorithms to solve the inverse min-max spanning tree problem and the inverse maximum capacity path problem.
引用
收藏
页码:123 / 135
页数:13
相关论文
共 25 条
[1]   The inverse optimal value problem [J].
Ahmed, S ;
Guan, YP .
MATHEMATICAL PROGRAMMING, 2005, 102 (01) :91-110
[2]   Inverse optimization [J].
Ahuja, RK ;
Orlin, JB .
OPERATIONS RESEARCH, 2001, 49 (05) :771-783
[3]   A faster algorithm for the inverse spanning tree problem [J].
Ahuja, RK ;
Orlin, JB .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2000, 34 (01) :177-193
[4]  
Burkard R. E., 2004, Discret. Optim, V1, P23, DOI DOI 10.1016/J.DISOPT.2004.03.003
[5]   ON THE USE OF AN INVERSE SHORTEST PATHS ALGORITHM FOR RECOVERING LINEARLY CORRELATED COSTS [J].
BURTON, D ;
TOINT, PL .
MATHEMATICAL PROGRAMMING, 1994, 63 (01) :1-22
[6]   ON AN INSTANCE OF THE INVERSE SHORTEST PATHS PROBLEM [J].
BURTON, D ;
TOINT, PL .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :45-61
[7]   The complexity analysis of the inverse center location problem [J].
Cai, MC ;
Yang, XG ;
Zhang, JZ .
JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (02) :213-218
[8]  
CAI MC, 1995, 1 INT S ISORA 95 BEI
[9]   MIN-MAX SPANNING TREE PROBLEM AND SOME EXTENSIONS [J].
CAMERINI, PM .
INFORMATION PROCESSING LETTERS, 1978, 7 (01) :10-14
[10]   A FASTER ALGORITHM FOR FINDING THE MINIMUM CUT IN A DIRECTED GRAPH [J].
HAO, JX ;
ORLIN, JB .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :424-446