"Plains-Hills": A New Model to Design Biomass-Derived Carbon Electrode Materials for High-Performance Potassium Ion Hybrid Supercapacitors

被引:10
|
作者
Chen, Ming [1 ]
Liu, Wei [1 ]
Du, Yongxu [1 ]
Cui, Yongpeng [1 ]
Feng, Wenting [1 ]
Zhou, Junan [1 ]
Gao, Xiang [1 ]
Wang, Tianqi [1 ]
Liu, Shuang [1 ]
Jin, Yongcheng [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Peoples R China
关键词
Pectin; Calcium chloride; Carbon materials; Pseudocapacitance; Energy storage; DOPED HARD CARBON; K-ION; GRAPHENE; NITROGEN; SULFUR; ANODE; FACILE;
D O I
10.1021/acssuschemeng.0c09311
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enhancing the pseudocapacitance of carbon electrodes by doping them with heteroatoms becomes one promising way for fabricating high energy density supercapacitors. Nevertheless, rich doping with heteroatoms often arouses an inevitable contradiction between pseudocapacitance and conductivity. In this paper, inspired by the surface structure of the lotus leaf, a novel "plains-hills" model of carbon structure is proposed to solve this problem. For achieving this plains-hills structure, CaCl2 is employed as both a complexing agent and an oxygen scavenger in Ca2+-biogels via host-guest complexation, resulting in an ultrathin carbon unstacked nanosheet ("plains" domain) with numerous protuberances ("hills" domain) by a facile one-step pyrolysis. The obtained plains-hills architecture containing the defectrich hills and the ordered plains achieves a harmonious coexistence of high pseudocapacitance and good conductivity in heteroatom-doped carbon materials. As expected, this kind of plains-hills carbon electrode exhibits a reversible capacity of 147.2 mAh g(-1) at 10 A g(-1) after 5000 cycles, leading to an obvious energy density enhancement of potassium ion hybrid supercapacitors.
引用
收藏
页码:3931 / 3941
页数:11
相关论文
共 50 条
  • [21] Biomass-Derived Activated Carbon for High-Performance Supercapacitor Electrode Applications
    Merin, Pulikkottil
    Joy, P. Jimmy
    Muralidharan, M. N.
    Gopalan, E. Veena
    Seema, Ansari
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (05) : 844 - 851
  • [22] Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors
    Li, Yubing
    Zhang, Deyi
    Zhang, Yameng
    He, Jingjing
    Wang, Yulin
    Wang, Kunjie
    Xu, Yangtao
    Li, Hongxia
    Wang, Yi
    JOURNAL OF POWER SOURCES, 2020, 448
  • [23] Tailoring hierarchically porous structure of biomass-derived carbon for high-performance supercapacitors
    Sun, Zhe
    Zhang, Miao
    Yin, Hui
    Hu, Qi
    Krishnan, Sarathkumar
    Huang, Zhanhua
    Qi, Houjuan
    Wang, Xiaolei
    RENEWABLE ENERGY, 2023, 219
  • [24] Biomass-derived inherently doped multifunctional hierarchically porous carbon as an efficient electrode material for high-performance supercapacitors
    Chulliyote, Reshma
    Hareendrakrishnakumar, Haritha
    Kannan, Sreekala Kunhi
    Joseph, Mary Gladis
    JOURNAL OF POROUS MATERIALS, 2023, 30 (04) : 1129 - 1141
  • [25] Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors
    Jie Zhang
    Jinwei Chen
    Haowei Yang
    Jinlong Fan
    Feilong Zhou
    Yichun Wang
    Gang Wang
    Ruilin Wang
    Journal of Solid State Electrochemistry, 2017, 21 : 2975 - 2984
  • [26] Biomass-derived inherently doped multifunctional hierarchically porous carbon as an efficient electrode material for high-performance supercapacitors
    Reshma Chulliyote
    Haritha Hareendrakrishnakumar
    Sreekala Kunhi Kannan
    Mary Gladis Joseph
    Journal of Porous Materials, 2023, 30 : 1129 - 1141
  • [27] Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors
    Zhang, Jie
    Chen, Jinwei
    Yang, Haowei
    Fan, Jinlong
    Zhou, Feilong
    Wang, Yichun
    Wang, Gang
    Wang, Ruilin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (10) : 2975 - 2984
  • [28] Biomass-derived nanostructured carbon materials for high-performance supercapacitor electrodes
    Ebrahimi, Mehrnaz
    Hosseini-Monfared, Hassan
    Javanbakht, Mehran
    Mahdi, Fatemeh
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (15) : 17363 - 17380
  • [29] A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors
    Luo, Lu
    Lan, Yuling
    Zhang, Qianqian
    Deng, Jianping
    Luo, Lingcong
    Zeng, Qinzhi
    Gao, Haili
    Zhao, Weigang
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [30] Biomass-Derived Porous Carbon Prepared from Egg White for High-performance Supercapacitor Electrode Materials
    Zhu, Ying
    Fang, Tingting
    Hua, Junqiang
    Qiu, Shujun
    Chu, Hailiang
    Zou, Yongjin
    Xiang, Cuili
    Huang, Pengru
    Zhang, Kexiang
    Lin, Xiangcheng
    Yan, Erhu
    Zhang, Huanzhi
    Xu, Fen
    Sun, Lixian
    Zeng, Ju-Lan
    CHEMISTRYSELECT, 2019, 4 (24): : 7358 - 7365