"Plains-Hills": A New Model to Design Biomass-Derived Carbon Electrode Materials for High-Performance Potassium Ion Hybrid Supercapacitors

被引:10
|
作者
Chen, Ming [1 ]
Liu, Wei [1 ]
Du, Yongxu [1 ]
Cui, Yongpeng [1 ]
Feng, Wenting [1 ]
Zhou, Junan [1 ]
Gao, Xiang [1 ]
Wang, Tianqi [1 ]
Liu, Shuang [1 ]
Jin, Yongcheng [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Peoples R China
关键词
Pectin; Calcium chloride; Carbon materials; Pseudocapacitance; Energy storage; DOPED HARD CARBON; K-ION; GRAPHENE; NITROGEN; SULFUR; ANODE; FACILE;
D O I
10.1021/acssuschemeng.0c09311
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enhancing the pseudocapacitance of carbon electrodes by doping them with heteroatoms becomes one promising way for fabricating high energy density supercapacitors. Nevertheless, rich doping with heteroatoms often arouses an inevitable contradiction between pseudocapacitance and conductivity. In this paper, inspired by the surface structure of the lotus leaf, a novel "plains-hills" model of carbon structure is proposed to solve this problem. For achieving this plains-hills structure, CaCl2 is employed as both a complexing agent and an oxygen scavenger in Ca2+-biogels via host-guest complexation, resulting in an ultrathin carbon unstacked nanosheet ("plains" domain) with numerous protuberances ("hills" domain) by a facile one-step pyrolysis. The obtained plains-hills architecture containing the defectrich hills and the ordered plains achieves a harmonious coexistence of high pseudocapacitance and good conductivity in heteroatom-doped carbon materials. As expected, this kind of plains-hills carbon electrode exhibits a reversible capacity of 147.2 mAh g(-1) at 10 A g(-1) after 5000 cycles, leading to an obvious energy density enhancement of potassium ion hybrid supercapacitors.
引用
收藏
页码:3931 / 3941
页数:11
相关论文
共 50 条
  • [11] Biomass-Derived Porous Carbon Prepared from Egg White for High-performance Supercapacitor Electrode Materials
    Zhu, Ying
    Fang, Tingting
    Hua, Junqiang
    Qiu, Shujun
    Chu, Hailiang
    Zou, Yongjin
    Xiang, Cuili
    Huang, Pengru
    Zhang, Kexiang
    Lin, Xiangcheng
    Yan, Erhu
    Zhang, Huanzhi
    Xu, Fen
    Sun, Lixian
    Zeng, Ju-Lan
    CHEMISTRYSELECT, 2019, 4 (24): : 7358 - 7365
  • [12] Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors
    Dong, Shian
    He, Xiaojun
    Zhang, Hanfang
    Xie, Xiaoyu
    Yu, Moxin
    Yu, Chang
    Xiao, Nan
    Qiu, Jieshan
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (33) : 15954 - 15960
  • [13] Green Production of Biomass-Derived Carbon Materials for High-Performance Lithium-Sulfur Batteries
    Ma, Chao
    Zhang, Mengmeng
    Ding, Yi
    Xue, Yan
    Wang, Hongju
    Li, Pengfei
    Wu, Dapeng
    NANOMATERIALS, 2023, 13 (11)
  • [14] High-Performance Aqueous Supercapacitors Based on Biomass-Derived Multiheteroatom Self-Doped Porous Carbon Membranes
    Liu, Jianwei
    Min, Shixiong
    Wang, Fang
    Zhang, Zhengguo
    ENERGY TECHNOLOGY, 2020, 8 (09)
  • [15] Biomass-derived S, P, Cl tri-doped porous carbon for high-performance supercapacitor
    Zhang, Li
    Wang, Youyun
    Yang, Shengwang
    Zhao, Guangzhen
    Han, Lu
    Li, Yanjiang
    Zhu, Guang
    DIAMOND AND RELATED MATERIALS, 2022, 126
  • [16] Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors
    Guan, Lu
    Pan, Lei
    Peng, Tingyue
    Gao, Cai
    Zhao, Weinan
    Yang, Zhongxue
    Hu, Han
    Wu, Mingbo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) : 8405 - 8412
  • [17] Carbon materials for high-performance potassium-ion energy-storage devices
    Lin, Changrong
    Wang, Yijun
    Zhong, Fulan
    Yu, Huiling
    Yan, Yurong
    Wu, Songping
    CHEMICAL ENGINEERING JOURNAL, 2021, 407
  • [18] Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors
    Niu, Jin
    Shao, Rong
    Liang, Jingjing
    Dou, Meiling
    Li, Zhilin
    Huang, Yaqin
    Wang, Feng
    NANO ENERGY, 2017, 36 : 322 - 330
  • [19] Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode
    Wang, Qiushi
    Zhang, Yifu
    Xiao, Jinqiu
    Jiang, Hanmei
    Hu, Tao
    Meng, Changgong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 1103 - 1113
  • [20] Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors
    Xue, Beichen
    Xu, Jiahuan
    Xiao, Rui
    CHEMICAL ENGINEERING JOURNAL, 2023, 454