Periodic solutions of nonlinear equations obtained by linear superposition

被引:30
作者
Cooper, F [1 ]
Khare, A
Sukhatme, U
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[3] Inst Phys, Bhubaneswar 751005, Orissa, India
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 47期
关键词
D O I
10.1088/0305-4470/35/47/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a type of linear superposition principle works for several nonlinear differential equations. Using this approach we find periodic solutions of the Kadomtsev-Petviashvili equation, the nonlinear Schrodinger equation, the lambdaphi(4) model, the sine-Gordon equation and the Boussinesq equation by making appropriate linear superpositions of known-periodic solutions. This unusual procedure for generating solutions of nonlinear differential equations is successful as a consequence of. some powerful, recently discovered, cyclic identities satisfied by the Jacobi elliptic functions.
引用
收藏
页码:10085 / 10100
页数:16
相关论文
共 27 条
[11]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[12]   Linear superposition in nonlinear equations [J].
Khare, A ;
Sukhatme, U .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :4-244101
[13]   Cyclic identities involving Jacobi elliptic functions [J].
Khare, A ;
Sukhatme, U .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) :3798-3806
[14]  
KHARE A, 2002, MATHPH020719
[15]  
KHARE A, 2002, MATHPH0204054
[16]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[17]  
MANEUF S, 1988, OPT COMMUN, V66, P325, DOI 10.1016/0030-4018(88)90424-5
[18]   EXPERIMENTAL-OBSERVATION OF PICOSECOND PULSE NARROWING AND SOLITONS IN OPTICAL FIBERS [J].
MOLLENAUER, LF ;
STOLEN, RH ;
GORDON, JP .
PHYSICAL REVIEW LETTERS, 1980, 45 (13) :1095-1098
[19]  
NEWELL AC, 1985, SOLITONS MATH PHYSIC
[20]   EXACT TRAVELING WAVE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION-EQUATIONS BY REDUCTION TO A QUADRATURE [J].
OTWINOWSKI, M ;
PAUL, R ;
LAIDLAW, WG .
PHYSICS LETTERS A, 1988, 128 (09) :483-487