Periodic solutions of nonlinear equations obtained by linear superposition

被引:30
作者
Cooper, F [1 ]
Khare, A
Sukhatme, U
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[3] Inst Phys, Bhubaneswar 751005, Orissa, India
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 47期
关键词
D O I
10.1088/0305-4470/35/47/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a type of linear superposition principle works for several nonlinear differential equations. Using this approach we find periodic solutions of the Kadomtsev-Petviashvili equation, the nonlinear Schrodinger equation, the lambdaphi(4) model, the sine-Gordon equation and the Boussinesq equation by making appropriate linear superpositions of known-periodic solutions. This unusual procedure for generating solutions of nonlinear differential equations is successful as a consequence of. some powerful, recently discovered, cyclic identities satisfied by the Jacobi elliptic functions.
引用
收藏
页码:10085 / 10100
页数:16
相关论文
共 27 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]  
ABRAMOWTIZ M, 1964, HDB MATH FUNCTIONS
[3]   OBSERVATION OF SPATIAL OPTICAL SOLITONS IN A NONLINEAR GLASS WAVE-GUIDE [J].
AITCHISON, JS ;
WEINER, AM ;
SILBERBERG, Y ;
OLIVER, MK ;
JACKEL, JL ;
LEAIRD, DE ;
VOGEL, EM ;
SMITH, PWE .
OPTICS LETTERS, 1990, 15 (09) :471-473
[4]   UNIFIED APPROACH TO INTERPRETATION OF DISPLACIVE AND ORDER-DISORDER SYSTEMS .2. DISPLACIVE SYSTEMS [J].
AUBRY, S .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) :3392-3402
[5]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611
[6]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. II. Case of attractive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063611-063611
[7]  
Cayley A, 1876, ELEMENTARY TREATISE
[8]  
Drazin P.G., 1989, SOLITONS INTRO
[9]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[10]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI