Influence of residual chirality on the conformation and enzymatic degradation of glycopolypeptide based biomaterials

被引:8
作者
Shi, Shun [1 ,2 ,3 ]
Wang, JiaYu [1 ,3 ]
Wang, TianRan [1 ,2 ,3 ]
Ren, Hui [1 ,2 ,3 ]
Zhou, YuHao [1 ,2 ,3 ]
Li, Gao [1 ,2 ,3 ]
He, ChaoLiang [1 ,2 ,3 ]
Chen, XueSi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, CAS Key Lab Polymer Ecomat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Coll Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Jilin Biomed Polymers Engn Lab, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
glycopolypeptides; secondary structures; enzymatic degradation; chirality; lectin binding; BIODEGRADABLE HYDROGEL; ADHESION; DESIGN; CELL; DIFFERENTIATION; STABILITY; MICELLES; ANALOGS;
D O I
10.1007/s11431-020-1713-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Glycopolypeptides as analogs of glycoproteins or glycosaminoglycans represent attractive building blocks for the construction of biomimetic biomaterials. However, the effects of amino acid chirality on the conformation and enzymatic degradation of glycopolypeptides are often overlooked. Here, we synthesized and characterized a range of glycopolypeptides composed of galactosylated poly(gamma-propargylglutamate)s containing L- and/or D-glutamate residues. Glycopolypeptides containing pure L-glutamate residues were predominantly alpha-helical, and the helicity increased over the degree of polymerization of the polypeptide backbones (24 to 44). The glycopolypeptide with pure D-glutamate residues adopted a mirrored alpha-helical conformation, whilst apparent random coil conformation was observed for the glycopolypeptide with equally mixed enantiomeric residues. The enzymatic degradation rates of the glycopolypeptides were markedly reduced following the introduction of D-glutamate residues into backbones. Galactoside pendants on these glycopolypeptides maintained their binding to peanut agglutinin. These structure-property relationships provide new insight for the design of biomimetic biomaterials containing glycopolypeptides.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 55 条
[1]   25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine [J].
Annabi, Nasim ;
Tamayol, Ali ;
Uquillas, Jorge Alfredo ;
Akbari, Mohsen ;
Bertassoni, Luiz E. ;
Cha, Chaenyung ;
Camci-Unal, Gulden ;
Dokmeci, Mehmet R. ;
Peppas, Nicholas A. ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2014, 26 (01) :85-124
[2]   Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells [J].
Benoit, Danielle S. W. ;
Schwartz, Michael P. ;
Durney, Andrew R. ;
Anseth, Kristi S. .
NATURE MATERIALS, 2008, 7 (10) :816-823
[3]   Secondary structures of synthetic polypeptide polymers [J].
Bonduelle, Colin .
POLYMER CHEMISTRY, 2018, 9 (13) :1517-1529
[4]   Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins [J].
Bonduelle, Colin ;
Lecommandoux, Sebastien .
BIOMACROMOLECULES, 2013, 14 (09) :2973-2983
[5]   Thermoresponsive Polypeptides from Pegylated Poly-L-glutamates [J].
Chen, Chongyi ;
Wang, Zhaohui ;
Li, Zhibo .
BIOMACROMOLECULES, 2011, 12 (08) :2859-2863
[6]   Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol) [J].
Cheng, Yilong ;
He, Chaoliang ;
Xiao, Chunsheng ;
Ding, Jianxun ;
Zhuang, Xiuli ;
Chen, Xuesi .
POLYMER CHEMISTRY, 2011, 2 (11) :2627-2634
[7]   Cartilaginous Extracellular Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering [J].
Choi, Bogyu ;
Kim, Soyon ;
Lin, Brian ;
Wu, Benjamin M. ;
Lee, Min .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) :20110-20121
[8]  
DeForest CA, 2009, NAT MATER, V8, P659, DOI [10.1038/NMAT2473, 10.1038/nmat2473]
[9]   Nanotechnological strategies for engineering complex tissues [J].
Dvir, Tal ;
Timko, Brian P. ;
Kohane, Daniel S. ;
Langer, Robert .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :13-22
[10]   Glycobiology: Toward understanding the function of sugars [J].
Dwek, RA .
CHEMICAL REVIEWS, 1996, 96 (02) :683-720