Photo-energy conversion efficiency of CH3NH3PbI3/C60 heterojunction perovskite solar cells from first-principles

被引:3
作者
Chew, Khian-Hooi [1 ]
Kuwahara, Riichi [2 ]
Ohno, Kaoru [3 ]
机构
[1] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
[2] Dassault Syst, Shinagawa Ku, ThinkPk Tower,2-1-1 Osaki, Tokyo 1416020, Japan
[3] Yokohama Natl Univ, Dept Phys, Hogogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
来源
MATERIALS ADVANCES | 2021年 / 2卷 / 05期
关键词
HALIDE PEROVSKITES; SPIRO-OMETAD; FILMS; DEGRADATION; TEMPERATURE; HYSTERESIS; FULLERENES; C-60;
D O I
10.1039/d0ma00853b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Halide perovskites have emerged as the most potential candidate for the next-generation solar cells. In this work, we conduct a comprehensive first-principles study on the photo-energy conversion efficiency (PCE) of the CH3NH3PbI3/C-60 heterojunction. Since perovskite solar cells (PSCs) are generally exposed to substantial temperature variations that affect the photo-physics and charge separation in the perovskites, finite slabs of both the tetragonal- and cubic-phases of CH3NH3PbI3 (MAPbI(3)) are constructed with different orientations of the methylammonium (MA) cation with respect to the perovskite surface. A C-60 molecule, acting as an electron acceptor and transport material, is introduced at various positions on the MAPbI(3) surface. Using the detailed balance approach, the PCE of the heterojunction is determined by examining the Kohn-Sham energies and orbitals located either in MAPbI(3) or in C-60. Our study reveals that the stability, the exciton dissociation efficiency, and the PCE of the tetragonal MAPbI(3)/C-60 heterojunctions strongly depend on the MA orientation and the C-60 position on the MAPbI(3) surface. This is attributed to the polar behavior of MAPbI(3). Using the tetragonal-phase heterojunction, a high PCE of eta similar to 19% can be achieved, if certain surface conditions are met. Built-in electric field originating from the surface dipoles of the MA cation facilitates the dissociation of electron-hole pairs and the electron transfer to fullerene. On the other hand, the heterojunction with a high-temperature cubic MAPbI(3) structure exhibits a PCE of eta similar to 10%, regardless of the MA orientation and C-60 on the MAPbI(3) surface.
引用
收藏
页码:1665 / 1675
页数:11
相关论文
共 50 条
[31]   Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells [J].
Abdi-Jalebi, Mojtaba ;
Dar, M. Ibrahim ;
Sadhanala, Aditya ;
Senanayak, Satyaprasad P. ;
Gratzel, Michael ;
Friend, Richard H. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (121)
[32]   Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study [J].
Montoya De Los Santos, I ;
Cortina-Marrero, Hugo J. ;
Ruiz-Sanchez, M. A. ;
Hechavarria-Difur, L. ;
Sanchez-Rodriguez, F. J. ;
Courel, Maykel ;
Hu, Hailin .
SOLAR ENERGY, 2020, 199 :198-205
[33]   Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions [J].
Rajamanickam, Nagalingam ;
Kumari, Sudesh ;
Vendra, Venkat Kalyan ;
Lavery, Brandon W. ;
Spurgeon, Joshua ;
Druffel, Thad ;
Sunkara, Mahendra K. .
NANOTECHNOLOGY, 2016, 27 (23)
[34]   First-Principles Investigation on the Electronic and Mechanical Properties of Cs-Doped CH3NH3PbI3 [J].
Liu, Dongyan ;
Li, Shanshan ;
Bian, Fang ;
Meng, Xiangying .
MATERIALS, 2018, 11 (07)
[35]   Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells [J].
Xiong, Jian ;
Yang, Bingchu ;
Wu, Runsheng ;
Cao, Chenghao ;
Huang, Yulan ;
Liu, Chengbin ;
Hu, Zhikun ;
Huang, Han ;
Gao, Yongli ;
Yang, Junliang .
ORGANIC ELECTRONICS, 2015, 24 :106-112
[36]   Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules [J].
Troughton, Joel ;
Hooper, Katherine ;
Watson, Trystan M. .
NANO ENERGY, 2017, 39 :60-68
[37]   Water-resistance of macromolecules adsorbed on CH3NH3PbI3 surfaces: A first-principles study [J].
Chen, Po-Tuan ;
Yung, Tung-Yuan ;
Liu, Ting-Yu ;
Sher, Chin-Wei ;
Hayashi, Michitoshi .
CHEMICAL PHYSICS LETTERS, 2017, 686 :203-211
[38]   Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles [J].
Zhao, Tianqi ;
Shi, Wen ;
Xi, Jinyang ;
Wang, Dong ;
Shuai, Zhigang .
SCIENTIFIC REPORTS, 2016, 6
[39]   Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate [J].
Heo, Jin Hyuck ;
Song, Dae Ho ;
Han, Hye Ji ;
Kim, Seong Yeon ;
Kim, Jun Ho ;
Kim, Dasom ;
Shin, Hee Won ;
Ahn, Tae Kyu ;
Wolf, Christoph ;
Lee, Tae-Woo ;
Im, Sang Hyuk .
ADVANCED MATERIALS, 2015, 27 (22) :3424-3430
[40]   Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells [J].
Zhou, Qian ;
Jiao, Debao ;
Fu, Kailiang ;
Wu, Xiaojie ;
Chen, Yongsheng ;
Lu, Jingxiao ;
Yang, Shi-e .
SOLAR ENERGY, 2016, 123 :51-56