Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells

被引:253
作者
Altinkaya, Cesur [1 ]
Aydin, Erkan [2 ]
Ugur, Esma [2 ]
Isikgor, Furkan H. [2 ]
Subbiah, Anand S. [2 ]
De Bastiani, Michele [2 ]
Liu, Jiang [2 ]
Babayigit, Aslihan [2 ,3 ,4 ]
Allen, Thomas G. [2 ]
Laquai, Frederic [2 ]
Yildiz, Abdullah [1 ]
De Wolf, Stefaan [2 ]
机构
[1] Ankara Yildirim Beyazit Univ, Fac Engn & Nat Sci, Dept Energy Syst Engn, TR-06010 Ankara, Turkey
[2] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, KAUST Solar Ctr KSC, Thuwal 239556900, Saudi Arabia
[3] Hasselt Univ, Inst Mat Res IMO, Wetenschapspk 1, B-3590 Diepenbeek, Limburg, Belgium
[4] IMEC Vzw Div IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Limburg, Belgium
关键词
electron‐ selective layers; low‐ temperature processing; perovskite solar cells; SnO; (2); tin oxide; OPEN-CIRCUIT VOLTAGE; CHARGE-CARRIER CONCENTRATION; SNO2; THIN-FILM; P-I-N; LOW-TEMPERATURE; TRANSPORT LAYER; HALIDE PEROVSKITES; DOPED SNO2; BAND-GAP; PHASE SEGREGATION;
D O I
10.1002/adma.202005504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite solar cells (PSCs) have become a promising photovoltaic (PV) technology, where the evolution of the electron-selective layers (ESLs), an integral part of any PV device, has played a distinctive role to their progress. To date, the mesoporous titanium dioxide (TiO2)/compact TiO2 stack has been among the most used ESLs in state-of-the-art PSCs. However, this material requires high-temperature sintering and may induce hysteresis under operational conditions, raising concerns about its use toward commercialization. Recently, tin oxide (SnO2) has emerged as an attractive alternative ESL, thanks to its wide bandgap, high optical transmission, high carrier mobility, suitable band alignment with perovskites, and decent chemical stability. Additionally, its low-temperature processability enables compatibility with temperature-sensitive substrates, and thus flexible devices and tandem solar cells. Here, the notable developments of SnO2 as a perovskite-relevant ESL are reviewed with emphasis placed on the various fabrication methods and interfacial passivation routes toward champion solar cells with high stability. Further, a techno-economic analysis of SnO2 materials for large-scale deployment, together with a processing-toxicology assessment, is presented. Finally, a perspective on how SnO2 materials can be instrumental in successful large-scale module and perovskite-based tandem solar cell manufacturing is provided.
引用
收藏
页数:32
相关论文
共 316 条
[81]   Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells [J].
Hau, Steven K. ;
Cheng, You-Jung ;
Yip, Hin-Lap ;
Zhang, Yong ;
Ma, Hong ;
Jen, Alex K. -Y. .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (07) :1892-1902
[82]  
Holleman A.F., 2001, INORG CHEM
[83]   SEMICONDUCTOR-LIKE CARRIER CONDUCTION AND ITS FIELD-EFFECT MOBILITY IN METAL-DOPED C-60 THIN-FILMS [J].
HOSHIMONO, K ;
FUJIMORI, S ;
FUJITA, S ;
FUJITA, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1993, 32 (8A) :L1070-L1073
[84]   Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer [J].
Hou, Meihui ;
Zhang, Haijuan ;
Wang, Ze ;
Xia, Yingdong ;
Chen, Yonghua ;
Huang, Wei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) :30607-30613
[85]   Electron Transporting Bilayer of SnO2 and TiO2 Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells [J].
Hu, Manman ;
Zhang, Luozheng ;
She, Suyang ;
Wu, Jianchang ;
Zhou, Xianyong ;
Li, Xiangnan ;
Wang, Deng ;
Miao, Jun ;
Mi, Guojun ;
Chen, Hong ;
Tian, Yanqing ;
Xu, Baomin ;
Cheng, Chun .
SOLAR RRL, 2020, 4 (01)
[86]   Ionic liquid modified SnO2 nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells [J].
Huang, Chun ;
Lin, Peng ;
Fu, Nianqing ;
Sun, Kaiwen ;
Ye, Mao ;
Liu, Chang ;
Zhou, Xianyong ;
Shu, Longlong ;
Hao, Xiaojing ;
Xu, Baomin ;
Zeng, Xierong ;
Wang, Yu ;
Ke, Shanming .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (44) :22086-22095
[87]   High-Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer [J].
Huang, Keqing ;
Peng, Yongyi ;
Gao, Yaxin ;
Shi, Jiao ;
Li, Hengyue ;
Mo, Xindi ;
Huang, Han ;
Gao, Yongli ;
Ding, Liming ;
Yang, Junliang .
ADVANCED ENERGY MATERIALS, 2019, 9 (44)
[88]   UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells [J].
Huang, Like ;
Sun, Xiaoxiang ;
Li, Chang ;
Xu, Jie ;
Xu, Rui ;
Du, Yangyang ;
Ni, Jian ;
Cai, Hongkun ;
Li, Juan ;
Hu, Ziyang ;
Zhang, Jianjun .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) :21909-21920
[89]   21.7% efficiency achieved in planar n-i-p perovskite solar cells via interface engineering with water-soluble 2D TiS2 [J].
Huang, Peng ;
Chen, Qiaoyun ;
Zhang, Kaicheng ;
Yuan, Ligang ;
Zhou, Yi ;
Song, Bo ;
Li, Yongfang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (11) :6213-6219
[90]   Solution-Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics [J].
Huang, Zhanfeng ;
Ouyang, Dan ;
Shih, Chun-Jen ;
Yang, Boping ;
Choy, Wallace C. H. .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)