Manipulation of light in a generalized coupled Nonlinear Schrodinger equation

被引:12
作者
Radha, R. [1 ]
Vinayagam, P. S. [1 ]
Porsezian, K. [2 ]
机构
[1] Govt Coll Women Autonomous, Ctr Nonlinear Sci CeNSc, PG & Res Dept Phys, Kumbakonam 612001, India
[2] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 37卷
关键词
Coupled nonlinear Schrodinger system; Bright soliton; Gauge transformation; Lax pair; DISPERSIVE DIELECTRIC FIBERS; OPTICAL PULSES; INTEGRABILITY; TRANSMISSION; SOLITONS;
D O I
10.1016/j.cnsns.2016.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a generalized coupled nonlinear Schrodinger (GCNLS) equation containing Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM) and Four Wave Mixing (FWM) describing the propagation of electromagnetic radiation through an optical fibre and generate the associated Lax-pair. We then construct bright solitons employing gauge transformation approach. The collisional dynamics of bright solitons indicates that it is not only possible to manipulate intensity (energy) between the two modes (optical beams), but also within a given mode unlike the Manakov model which does not have the same freedom. The freedom to manipulate intensity (energy) in a given mode or between two modes arises due to a suitable combination of SPM, XPM and FWM. While SPM and XPM are controlled by an arbitrary real parameter each, FWM is governed by two arbitrary complex parameters. The above model may have wider ramifications in nonlinear optics and Bose-Einstein Condensates (BECs). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 21 条
[1]   Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrodinger equations [J].
Agalarov, Agalar ;
Zhulego, Vladimir ;
Gadzhimuradov, Telman .
PHYSICAL REVIEW E, 2015, 91 (04)
[2]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[3]   AN ALTERNATIVE EXPLICIT CONSTRUCTION OF N-SOLITON SOLUTIONS IN 1+1 DIMENSIONS [J].
CHAU, LL ;
SHAW, JC ;
YEN, HC .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (07) :1737-1743
[4]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144
[5]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .2. NORMAL DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (04) :171-172
[6]  
Hasegawa A., 1995, Solitons in Optical Communications
[7]  
Jafari H., 2015, Int. J. Appl. Comput. Math, V1, P559, DOI [10.1007/s40819-015-0031-0, DOI 10.1007/S40819-015-0031-0]
[8]  
Jafari H, 2012, ROM REP PHYS, V64, P337
[9]   The first integral method and traveling wave solutions to Davey-Stewartson equation [J].
Jafari, Hossein ;
Sooraki, Atefe ;
Talebi, Yahya ;
Biswas, Anjan .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (02) :182-193
[10]   SOLITON TRAPPING AND DAUGHTER WAVES IN THE MANAKOV MODEL [J].
KAUP, DJ ;
MALOMED, BA .
PHYSICAL REVIEW A, 1993, 48 (01) :599-604