Multiview Clustering: A Late Fusion Approach Using Latent Models

被引:69
作者
Bruno, Eric [1 ]
Marchand-Maillet, Stephane [1 ]
机构
[1] Univ Geneva, Comp Sci Dpt, Viper Grp, Geneva, Switzerland
来源
PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL | 2009年
关键词
Multi-view clustering; data fusion; latent models;
D O I
10.1145/1571941.1572103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view clustering is an important problem in information retrieval due to the abundance of data offering many perspectives and generating multi-view representations. We investigate in this short note a late fusion approach for multi-view clustering based on the latent modeling of cluster-cluster relationships. We derive a probabilistic multi-view clustering model outperforming an early-fusion approach based on multi-view feature correlation analysis.
引用
收藏
页码:736 / 737
页数:2
相关论文
共 8 条
[1]  
Bekkerman R., 2005, ICML, P41
[2]   Multi-view clustering [J].
Bickel, S ;
Scheffer, T .
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, :19-26
[3]  
Gaussier E., 2005, SIGIR 2005. Proceedings of the Twenty-Eighth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P601, DOI 10.1145/1076034.1076148
[4]   Unsupervised learning by probabilistic latent semantic analysis [J].
Hofmann, T .
MACHINE LEARNING, 2001, 42 (1-2) :177-196
[5]  
Homburg Helge., 2005, ISMIR, P528
[6]  
Lange T., 2006, ADV NEURAL INFORM PR, V18, P723
[7]  
Lee DD, 2001, ADV NEUR IN, V13, P556
[8]  
ZHOU D, 2007, ICML 07, P1159, DOI DOI 10.1145/1273496.1273642