Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures

被引:279
作者
Li, Zongchen [1 ,2 ]
Liu, Xuemin [1 ,2 ]
Jin, Wei [3 ]
Hu, Qingsong [1 ,2 ]
Zhao, Yaping [1 ,2 ]
机构
[1] East China Normal Univ, Sch Ecol & Environm Sci, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Shanghai 200062, Peoples R China
[2] Inst Ecochongming, Shanghai 200062, Peoples R China
[3] Tongji Univ, Sch Environm Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Arsenic species; MIL-101(Fe); Adsorption; Interaction mechanism; METAL-ORGANIC FRAMEWORKS; AROMATIC ORGANOARSENIC COMPOUNDS; P-ARSANILIC ACID; AQUEOUS-SOLUTION; EFFICIENT REMOVAL; ENHANCED REMOVAL; HIGHLY EFFICIENT; BINARY OXIDE; WATER; DEGRADATION;
D O I
10.1016/j.jcis.2019.07.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Arsenic species are regarded as typical water pollutants due to their toxicity. The chemical structures of arsenic species greatly influence their migration and transformation in the environment. Metal-organic frameworks (MOFs) are used as reliable adsorbents to control arsenic contamination, so it is urgently needed to study the effect of chemical structure of arsenic species during adsorption process. The adsorption behaviors of arsenate (As(V)) and its organic forms such as roxarsone (ROX), p-arsanilic acid (p-ASA) and dimethyl arsenate (DMA) by MIL-101(Fe), a type of highly porosity iron-based MOFs in aqueous environment were detailed investigated. The adsorption kinetics of those arsenic species on MIL-101(Fe) is rapid followed with pseudo-second-order kinetic model. MIL-101(Fe) exhibits excellent adsorption capacities for As(V), ROX, p-ASA and DMA with maximum adsorption capacities of 232.98, 507.97, 379.65 and 158.94 mg g(-1), respectively. The formed Fe-O-As inner-sphere coordination between arsenic species and the incomplete-coordinated cationic Fe in the MIL-101(Fe) cluster is the primary adsorption mechanism based on FTIR and XPS analysis. Substituent aromatic units in ROX and p-ASA strengthen the adsorption on MIL-101(Fe) through hydrogen bonds and pi-pi stacking interaction, resulting in higher adsorption capacities far beyond that of As(V) and DMA. The reusability of MIL-101(Fe) is limited by the strong Fe-O-As coordination. These results confirm MIL-101(Fe) a reliable adsorbent to control the aqueous arsenic species contamination and emphasize the significant role of the chemical structure of arsenic speciation on adsorption performances of MOFs. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:692 / 704
页数:13
相关论文
共 89 条
[1]   Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system [J].
Almasi, Miroslav ;
Zelenak, Vladimir ;
Palotai, Peter ;
Benova, Eva ;
Zelenakova, Adriana .
INORGANIC CHEMISTRY COMMUNICATIONS, 2018, 93 :115-120
[2]   Iron supported on bioinspired green silica for water remediation [J].
Alotaibi, Khalid M. ;
Shiels, Lewis ;
Lacaze, Laure ;
Peshkur, Tanya A. ;
Anderson, Peter ;
Machala, Libor ;
Critchley, Kevin ;
Patwardhan, Siddharth V. ;
Gibson, Lorraine T. .
CHEMICAL SCIENCE, 2017, 8 (01) :567-576
[3]   Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles [J].
An, Byungryul ;
Zhao, Dongye .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 211 :332-341
[4]   X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface [J].
Arai, Y ;
Elzinga, EJ ;
Sparks, DL .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 235 (01) :80-88
[5]   The dual capture of AsV and AsIII by UiO-66 and analogues [J].
Audu, Cornelius O. ;
Nguyen, Huong Giang T. ;
Chang, Chih-Yi ;
Katz, Michael J. ;
Mao, Lily ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Nguyen, SonBinh T. .
CHEMICAL SCIENCE, 2016, 7 (10) :6492-6498
[6]   A review on sources, toxicity and remediation technologies for removing arsenic from drinking water [J].
Basu, Ankita ;
Saha, Debabrata ;
Saha, Rumpa ;
Ghosh, Tuhin ;
Saha, Bidyut .
RESEARCH ON CHEMICAL INTERMEDIATES, 2014, 40 (02) :447-485
[7]   Presence of organoarsenicals used in cotton production in agricultural water and soil of the southern United States [J].
Bednar, AJ ;
Garbarino, JR ;
Ranville, JF ;
Wildeman, TR .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2002, 50 (25) :7340-7344
[8]   The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar [J].
Beesley, Luke ;
Marmiroli, Marta .
ENVIRONMENTAL POLLUTION, 2011, 159 (02) :474-480
[9]   Arsenic immobilization by calcium arsenate formation [J].
Bothe, JV ;
Brown, PW .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (21) :3806-3811
[10]   Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe) [J].
Cai, Jianhua ;
Wang, Xueyun ;
Zhou, Yue ;
Jiang, Li ;
Wang, Chunru .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (16) :10864-10867