Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

被引:21
作者
Dallas, Panagiotis [1 ]
Bourlinos, Athanasios B. [1 ]
Komninou, Philomela [2 ]
Karakassides, Michael [3 ]
Niarchos, Dimitrios [1 ]
机构
[1] NCSR Demokritos, Inst Mat Sci, Athens 15310, Greece
[2] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece
[3] Univ Ioannina, Dept Mat Sci & Engn, GR-45110 Ioannina, Greece
来源
NANOSCALE RESEARCH LETTERS | 2009年 / 4卷 / 11期
关键词
Silver nanoparticles; Graphitization; Acetylenedicarboxylic acid; Nanocomposites; ANTIBACTERIAL ACTIVITY; COORDINATION POLYMERS; NANOTUBES; NANOCOMPOSITES; DISPERSIONS; STABILITY; COMPLEXES; ROUTE;
D O I
10.1007/s11671-009-9405-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I)/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 degrees C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp(2) carbon at the Raman spectrum of both samples.
引用
收藏
页码:1358 / 1364
页数:7
相关论文
共 34 条
[11]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[12]   Preparation of Silver Nanoparticle Dispersions via a Dendritic-Polymer Template Approach and their Use for Antibacterial Surface Treatment [J].
Gladitz, Michael ;
Reinemann, Stefan ;
Radusch, Hans-Joachim .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2009, 294 (03) :178-189
[13]   Organometallic precursor route to carbon nanotubes [J].
Govindaraj, A ;
Rao, CNR .
PURE AND APPLIED CHEMISTRY, 2002, 74 (09) :1571-1580
[14]   Tapered carbon nanotubes from activated carbon powders [J].
Hu, JQ ;
Bando, Y ;
Zhan, JH ;
Zhi, CY ;
Xu, FF ;
Golberg, D .
ADVANCED MATERIALS, 2006, 18 (02) :197-+
[15]   Controlling anisotropic nanoparticle growth through plasmon excitation [J].
Jin, RC ;
Cao, YC ;
Hao, EC ;
Métraux, GS ;
Schatz, GC ;
Mirkin, CA .
NATURE, 2003, 425 (6957) :487-490
[16]   The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J].
Kelly, KL ;
Coronado, E ;
Zhao, LL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :668-677
[17]   Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) [J].
Kvitek, Libor ;
Panacek, Ales ;
Soukupova, Jana ;
Kolar, Milan ;
Vecerova, Renata ;
Prucek, Robert ;
Holecova, Mirka ;
Zboril, Radek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :5825-5834
[18]   Carbon black dispersions and carbon-silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance [J].
Leong, CK ;
Chung, DDL .
CARBON, 2004, 42 (11) :2323-2327
[19]  
Li MX, 2005, CHINESE CHEM LETT, V16, P1405
[20]   An unusual hydrogen-bonded network associated with metal-organic chains:: Structure and crystal packing of the coordination polymer [Cd(terephthalate)(H2O)3]•4H2O [J].
Michaelides, OA ;
Tsaousis, D ;
Skoulika, S ;
Raptopoulou, CP ;
Terzis, A .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 1998, 54 :657-662