Anti-Fermi-Pasta-Ulam energy recursion in diatomic lattices at low energy densities

被引:19
作者
Dmitriev, Sergey V. [1 ]
Sukhorukov, Andrey A. [2 ]
Pshenichnyuk, Anatoly I. [1 ]
Khadeeva, Liya Z. [1 ]
Iskandarov, Albert M. [1 ]
Kivshar, Yuri S. [2 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, Ufa 450001, Russia
[2] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
Brillouin zones; lattice dynamics; Morse potential; DISCRETE BREATHERS; MODES;
D O I
10.1103/PhysRevB.80.094302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the dynamics of one- and two-dimensional diatomic lattices with the interatomic Morse potentials for the initial conditions selected at the edge of the Brillouin zone of the dispersion spectrum, when only light atoms are excited with the staggered mode while all heavy atoms remain at rest (the so-called anti-Fermi-Pasta-Ulam problem). We demonstrate that modulational instability of such a nonlinear state may result in almost periodic temporal dynamics of the lattice with spatial localization and delocalization of energies. Such a recursion occurs many times with a very slow decay, especially for the initial states with low energy. The energy recursion results in the formation of highly localized, large-amplitude gap discrete breathers. For one-dimensional diatomic lattices, we describe the periodic energy recursion analytically for a simple model with the nearest-neighbor interaction and cubic anharmonicity.
引用
收藏
页数:9
相关论文
共 26 条
[1]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[2]   Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass [J].
Afify, N. D. ;
Mountjoy, G. .
PHYSICAL REVIEW B, 2009, 79 (02)
[3]   Self-trapped nonlinear matter waves in periodic potentials [J].
Alexander, TJ ;
Ostrovskaya, EA ;
Kivshar, YS .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[4]   Localizing energy through nonlinearity and discreteness [J].
Campbell, DK ;
Flach, S ;
Kivshar, YS .
PHYSICS TODAY, 2004, 57 (01) :43-49
[5]   ELASTIC-CONSTANTS OF THE BETA-CU-ZN ALLOY SYSTEM - A MONTE-CARLO STUDY [J].
CASTAN, T ;
PLANES, A ;
RAMOS, A ;
VINALS, J .
PHYSICAL REVIEW B, 1989, 39 (06) :3551-3553
[6]   The anti-FPU problem [J].
Dauxois, T ;
Khomeriki, R ;
Piazza, F ;
Ruffo, S .
CHAOS, 2005, 15 (01)
[7]   Localized vibrational modes in an A 3 B two-dimensional perfect crystal [J].
Dmitriev, S. V. ;
Medvedev, N. N. ;
Mulyukov, R. R. ;
Pozhidaeva, O. V. ;
Potekaev, A. I. ;
Starostenkov, M. D. .
RUSSIAN PHYSICS JOURNAL, 2008, 51 (08) :858-865
[8]   Modulational instability of zone boundary mode and band edge modes in nonlinear diatomic lattices [J].
Doi, Yusuke ;
Nakatani, Akihiro ;
Yoshimura, Kazuyuki .
PHYSICAL REVIEW E, 2009, 79 (02)
[9]   Full-time dynamics of modulational instability in spinor Bose-Einstein condensates [J].
Doktorov, Evgeny V. ;
Rothos, Vassilis M. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW A, 2007, 76 (01)
[10]   Molecular dynamics analysis of nanoimprinted Cu-Ni alloys [J].
Fang, Te-Hua ;
Wu, Cheng-Da ;
Chang, Win-Jin .
APPLIED SURFACE SCIENCE, 2007, 253 (16) :6963-6968