An exact algorithm for MAX-CUT in sparse graphs

被引:11
作者
Della Croce, F.
Kaminski, M. J.
Paschos, V. Th.
机构
[1] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
[2] DAI, Politecn Torino, Turin, Italy
[3] Univ Paris 09, F-75775 Paris 16, France
基金
美国国家科学基金会;
关键词
MAX-CUT; exact algorithm; sparse graphs;
D O I
10.1016/j.orl.2006.04.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study exact algorithms for the MAX-CUT problem. Introducing a new technique, we present an algorithmic scheme that computes a maximum cut in graphs with bounded maximum degree. Our algorithm runs in time O*(2((l-(2/Delta))n)). We also describe a MAX-CUT algorithm for general graphs. Its time complexity is O*(2(mn/(m+n))). Both algorithms use polynomial space. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:403 / 408
页数:6
相关论文
共 13 条
[1]  
Bodlaender H. L., 2000, Nordic Journal of Computing, V7, P14
[2]  
FEDIN SS, 2005, J MATH SCI, V126, P1200
[3]   Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT [J].
Gramm, J ;
Hirsch, EA ;
Niedermeier, R ;
Rossmanith, P .
DISCRETE APPLIED MATHEMATICS, 2003, 130 (02) :139-155
[4]  
KNEIS J, AIB200508 DEP COMP S
[5]   3 SHORT PROOFS IN GRAPH THEORY [J].
LOVASZ, L .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (03) :269-271
[6]   A note on greedy algorithms for the maximum weighted independent set problem [J].
Sakai, S ;
Togasaki, M ;
Yamazaki, K .
DISCRETE APPLIED MATHEMATICS, 2003, 126 (2-3) :313-322
[7]  
Schrijver Alexander, 1999, WILEY INTERSCIENCE S
[8]  
Scott AD, 2003, LECT NOTES COMPUT SC, V2764, P382
[9]  
SCOTT AD, 2004, 23417 W0411056 TJ WA
[10]   A new algorithm for optimal 2-constraint satisfaction and its implications [J].
Williams, R .
THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) :357-365