Vector-valued weak Gabor dual frames on discrete periodic sets

被引:4
作者
Li, Yun-Zhang [1 ]
Zhao, Jing [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
WEYL-HEISENBERG FRAMES; EFFICIENT ALGORITHMS; WAVELET FRAMES; TRANSFORM; CONSTRUCTION; SYSTEMS;
D O I
10.1063/1.5043493
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The notion of weak dual frames is a generalization of that of dual frames. Gabor analysis on discrete periodic sets has potential applications in signal processing. This paper addresses vector-valued weak Gabor dual frames on discrete periodic sets. We introduce the notions of its weak oblique Gabor dual, weak Gabor duals of types I and II for a Gabor system on a discrete periodic set. Using the Zak-transform matrix method, we characterize these three kinds of weak duals and their uniqueness. Finally, we give an explicit expression of a class of weak Gabor duals and provide some examples. Published under license by AIP Publishing.
引用
收藏
页数:18
相关论文
共 61 条
[1]   Discrete coherent states for higher Landau levels [J].
Abreu, L. D. ;
Balazs, P. ;
de Gosson, M. ;
Mouayn, Z. .
ANNALS OF PHYSICS, 2015, 363 :337-353
[2]   Superframes and Polyanalytic Wavelets [J].
Abreu, Luis Daniel .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) :1-20
[3]   On the structure of Gabor and super Gabor spaces [J].
Abreu, Luis Daniel .
MONATSHEFTE FUR MATHEMATIK, 2010, 161 (03) :237-253
[5]  
[Anonymous], 2000, MEM AM MATH SOC
[6]  
[Anonymous], NEW YORK J MATH
[7]   Multiplexing of signals using superframes [J].
Balan, R .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 :118-129
[8]  
Balan R., 1999, Contemp. Math, V247, P29
[9]  
BALAN R, 1998, CONT MATH, V216, P3, DOI DOI 10.1090/conm/216/02961
[10]   Orthogonal wavelet frames and vector-valued wavelet transforms [J].
Bhatt, Ghanshyam ;
Johnson, Brody Dylan ;
Weber, Eric .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (02) :215-234