Post-combustion CO2 capture by RVPSA in a large-scale steam reforming plant

被引:18
|
作者
Capocelli, Mauro [1 ]
Luberti, Mauro [4 ]
Inno, Stefano [2 ,5 ]
D'Antonio, Fabrizio [3 ]
Di Natale, Francesco [2 ]
Lancia, Amedeo [2 ]
机构
[1] Univ Campus Biomed Rome, Fac Engn, Chem Engn Sustainable Dev, Via Alvaro Portillo 21, I-00128 Rome, Italy
[2] Univ Naples Federico II, Dept Chem Mat & Ind Prod Engn, Ple V Tecchio 80, I-80125 Naples, Italy
[3] Raffineria Milazzo SCPA Contrada Mangiavacca, I-98057 Milazzo, ME, Italy
[4] Proc Syst Enterprise Ltd, London, England
[5] Versalis SpA, Proc Technol & Engn, Via Baiona 107, Ravenna, Italy
关键词
Steam reforming; Chemical process simulation; Sensitivity analysis; Rapid vacuum pressure swing adsorption; PRESSURE-SWING ADSORPTION; FLUE-GAS; HYDROGEN-PRODUCTION; METHANE; DESIGN; TEMPERATURE; SIMULATION; KINETICS; POWER; VPSA;
D O I
10.1016/j.jcou.2019.02.012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Steam reforming (SR) of natural gas is the most widespread process to produce hydrogen. This paper presents a comprehensive simulation of an industrial plant for hydrogen production for the internal use in a refinery industrial complex based on the SR of different feedstocks. The reference plant is a 42,000 Nm(3)/h hydrogen production unit located in the South of Italy in the Refinery of Milazzo, Sicily. Hydrogen is produced from light gaseous hydrocarbons and purified by means of pressure swing adsorption technology. In the present work, a process simulation has been built on scientific basis and validated against field data at different feedstocks and operating conditions. The model correctly predicts the effect of relevant process parameters such as reformer feed pressure and temperature, steam to carbon ratio and plant load. In addition, the paper proposes the design of an industrial-scale rapid vacuum pressure swing adsorption (RVPSA) unit which was designed and simulated to capture carbon dioxide from the flue gas exiting the steam reformer. The RVPSA unit was integrated in the current plant enabling the concentration of CO2 with a purity of 96.64%, an overall recovery of 90.84% and a specific energy consumption of 628.93 kJ/kgCO(2), thus meeting the requirements for transportation and geological storage. An energetic efficiency calculation was introduced to quantify the effectiveness of the hydrogen conversion process and to predict the effect of CO2 capture and some process parameters to the overall H-2 production efficiency.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 50 条
  • [41] Exergoeconomic Analysis of Post-Combustion CO2 Capture Processes
    Schach, M. -O.
    Schneider, R.
    Schramm, H.
    Repke, J. -U.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 997 - 1002
  • [42] Derivation of power loss factors to evaluate the impact of post-combustion CO2 capture processes on steam power plant performance
    Linnenberg, Sebastian
    Liebenthal, Ulrich
    Oexmann, Jochen
    Kather, Alfons
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1385 - 1394
  • [43] Chemical looping for pre-combustion and post-combustion CO2 capture
    Mantripragada, Hari C.
    Rubin, Edward S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6403 - 6410
  • [44] CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture
    Yu, W.
    Wang, T.
    Fang, M. X.
    Hei, H.
    Luo, Z. Y.
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 591 - 596
  • [45] Process and Integration Optimization of Post-Combustion CO2 Capture System in a Coal Power Plant
    Liu, Lianbo
    Wang, Shiqing
    Niu, Hongwei
    Gao, Shiwang
    APPLIED ENERGY SYMPOSIUM AND FORUM, CARBON CAPTURE, UTILIZATION AND STORAGE, CCUS 2018, 2018, 154 : 86 - 93
  • [46] Model Predictive Control of Post-Combustion CO2 Capture Process integrated with a power plant
    Mehleri, Evgenia D.
    Mac Dowell, Niall
    Thornhill, Nina F.
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2015, 37 : 161 - 166
  • [47] Development and testing of a new post-combustion CO2 capture solvent in pilot and demonstration plant
    Liu, Lianbo
    Fang, Mengxiang
    Xu, Shisen
    Wang, Jinyi
    Guo, Dongfang
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 113
  • [48] Dynamic simulation of post-combustion CO2 capture for flexible operation of the Brindisi pilot plant
    Flo, Nina Enaasen
    Kvamsdal, Hanne Marie
    Hillestad, Magne
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 48 : 204 - 215
  • [49] Comparison of current and advanced post-combustion CO2 capture technologies for power plant applications
    Gonzalez-Salazar, Miguel A.
    Perry, Robert J.
    Vipperla, Ravi-Kumar
    Hernandez-Nogales, Alvaro
    Nord, Lars O.
    Michelassi, Vittorio
    Shisler, Roger
    Lissianski, Vitali
    6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 3 - 14
  • [50] Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant
    Biliyok, Chechet
    Lawal, Adekola
    Wang, Meihong
    Seibert, Frank
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 428 - 445