An Automated Approach for Clinical Quantitative Information Extraction from Chinese Electronic Medical Records

被引:2
作者
Liu, Shanshan [1 ]
Pan, Xiaoyi [1 ]
Chen, Boyu [1 ]
Gao, Dongfa [1 ]
Hao, Tianyong [2 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China
来源
HEALTH INFORMATION SCIENCE (HIS 2018) | 2018年 / 11148卷
基金
中国国家自然科学基金;
关键词
Clinical quantitative information; Electronic medical record; Natural language processing; Information extraction; QUALITY; TEXT;
D O I
10.1007/978-3-030-01078-2_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Clinical quantitative information commonly exists in electronic medical records (EMRs) and is essential for recording patients' lab test or other characteristics in clinical notes. This study proposes an automated approach for extracting quantitative information from Chinese free-text EMR data including admission records, progress notes and ward-inspection records. The approach leverages pattern-learning combining with rule-based strategy to identify and extract clinical quantitative expressions. The experiments are based on 1,359 de-identified EMRs from the burn department of a domestic Grade-A Class-three hospital. The evaluation results present that our approach achieves a precision of 96.1%, a recall of 90.9%, and an F1-measure of 92.9%, demonstrating its effectiveness in clinical quantitative information extraction from EMR text.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2009, Synthesis Lectures on Human Language Technologies, DOI DOI 10.2200/S00211ED1V01Y200909HLT004
[2]  
[Anonymous], 2009, INTRO INFORM RETRIEV
[3]   Extraction of Adverse Drug Effects from Clinical Records [J].
Aramaki, Eiji ;
Miura, Yasuhide ;
Tonoike, Masatsugu ;
Ohkuma, Tomoko ;
Masuichi, Hiroshi ;
Waki, Kayo ;
Ohe, Kazuhiko .
MEDINFO 2010, PTS I AND II, 2010, 160 :739-743
[4]   Automatic extraction of numerical values from unstructured data in EHRs [J].
Bigeard, Elise ;
Jouhet, Vianney ;
Mougin, Fleur ;
Thiessard, Frantz ;
Grabar, Natalia .
DIGITAL HEALTHCARE EMPOWERING EUROPEANS, 2015, 210 :50-54
[5]   The Unified Medical Language System (UMLS): integrating biomedical terminology [J].
Bodenreider, O .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D267-D270
[6]   Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010 [J].
de Bruijn, Berry ;
Cherry, Colin ;
Kiritchenko, Svetlana ;
Martin, Joel ;
Zhu, Xiaodan .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2011, 18 (05) :557-562
[7]  
Evans D A, 1996, Proc AMIA Annu Fall Symp, P388
[8]   Syntactic parsing of clinical text: guideline and corpus development with handling ill-formed sentences [J].
Fan, Jung-wei ;
Yang, Elly W. ;
Jiang, Min ;
Prasad, Rashmi ;
Loomis, Richard M. ;
Zisook, Daniel S. ;
Denny, Josh C. ;
Xu, Hua ;
Huang, Yang .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (06) :1168-1177
[9]   Automated extraction of ejection fraction for quality measurement using regular expressions in Unstructured Information Management Architecture (UIMA) for heart failure [J].
Garvin, Jennifer H. ;
DuVall, Scott L. ;
South, Brett R. ;
Bray, Bruce E. ;
Bolton, Daniel ;
Heavirland, Julia ;
Pickard, Steve ;
Heidenreich, Paul ;
Shen, Shuying ;
Weir, Charlene ;
Samore, Matthew ;
Goldstein, Mary K. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (05) :859-866
[10]  
Gold Sigfried, 2008, AMIA Annu Symp Proc, P237