Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor

被引:120
作者
Zhang, Bo [1 ,2 ]
Wang, Huafang [2 ]
Shen, Shun [1 ]
She, Xiaojian [1 ]
Shi, Wei [2 ]
Chen, Jun [1 ]
Zhang, Qizhi [1 ]
Hu, Yu [2 ]
Pang, Zhiqing [1 ]
Jiang, Xinguo [1 ]
机构
[1] Fudan Univ, Sch Pharm, Key Lab Smart Drug Delivery, Minist Educ, 826 Zhangheng Rd, Shanghai 201203, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Hematol, Union Hosp, Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-amplified; Fibrin-targeting peptide; CREKA; Multi-walled carbon nanotubes; Photothermal therapy; NEAR-INFRARED RADIATION; DRUG-DELIVERY; IN-VIVO; TISSUE FACTOR; BRAIN GLIOMA; HOMING PEPTIDE; NANOPARTICLES; CANCER; CELLS; COAGULATION;
D O I
10.1016/j.biomaterials.2015.11.061
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Inability of nanomedicine to efficiently home to tumor site still poses great challenge in tumor drug delivery. Inspired by the amplified formation of fibrin in clotting cascade, a self-amplified drug delivery system was developed for tumor photothermal therapy (CMWNTs-PEG) using multi-walled carbon nanotubes (MWNTs) with favorable photothermal effect as the vector, polyethylene glycol as the shelter, CREKA peptide with special affinity for fibrin as the targeting moiety and NIR illumination as the external power. The self-amplified targeting property was carefully characterized. The in vivo temperature monitoring experiment demonstrated that CMWNTs-PEG could significantly elevate the temperature in the tumor region than its counterpart 24 h post an initial NIR illumination. The in vivo imaging and biodistribution experiment showed IR783-labeled ClVIWNTs-PEG with illumination could accumulate in tumors tissues about 6.4-fold higher than control group, much stronger than other treatment groups. In vivo distribution experiments revealed Cy3-labeled CMWNTs-PEG could deposit on the wall of tumor vessels, intravascular and extravascular spaces, far more extensive than its counterpart in tumor slices. The pharmacodynamics experiment revealed that after four times of illumination, the CMWNTs-PEG almost totally eradiated the tumor xenografts. Altogether, the self-amplified targeting system CMWNT5-PEG showed strong tumor targeting capacity and powerful photothermal therapeutic efficacy. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 51 条
[1]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[2]   Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery [J].
Bhirde, Ashwin A. ;
Patel, Vyomesh ;
Gavard, Julie ;
Zhang, Guofeng ;
Sousa, Alioscka A. ;
Masedunskas, Andrius ;
Leapman, Richard D. ;
Weigert, Roberto ;
Gutkind, J. Silvio ;
Rusling, James F. .
ACS NANO, 2009, 3 (02) :307-316
[3]   Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience [J].
Bieker, Ralf ;
Kessler, Torsten ;
Schwoeppe, Christian ;
Padro, Teresa ;
Persigehl, Thorsten ;
Bremer, Christoph ;
Dreischalueck, Johannes ;
Kolkmeyer, Astrid ;
Heindel, Walter ;
Mesters, Rolf M. ;
Berdel, Wolfgang E. .
BLOOD, 2009, 113 (20) :5019-5027
[4]   Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology [J].
Brigger, I ;
Chaminade, P ;
Desmaële, D ;
Peracchia, MT ;
d'Angelo, J ;
Gurny, R ;
Renoir, M ;
Couvreur, P .
PHARMACEUTICAL RESEARCH, 2000, 17 (09) :1124-1132
[5]   Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation [J].
Burke, Andrew ;
Ding, Xuanfeng ;
Singh, Ravi ;
Kraft, Robert A. ;
Levi-Polyachenko, Nicole ;
Rylander, Marissa Nichole ;
Szot, Chris ;
Buchanan, Cara ;
Whitney, Jon ;
Fisher, Jessica ;
Hatcher, Heather C. ;
D'Agostino, Ralph, Jr. ;
Kock, Nancy D. ;
Ajayan, P. M. ;
Carroll, David L. ;
Akman, Steven ;
Torti, Frank M. ;
Torti, Suzy V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (31) :12897-12902
[6]   Active targeting schemes for nanoparticle systems in cancer therapeutics [J].
Byrne, James D. ;
Betancourt, Tania ;
Brannon-Peppas, Lisa .
ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (15) :1615-1626
[7]   Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes [J].
Chakravarty, Pavitra ;
Marches, Radu ;
Zimmerman, Neil S. ;
Swafford, Austin D. -E. ;
Bajaj, Pooja ;
Musselman, Inga H. ;
Pantano, Paul ;
Draper, Rockford K. ;
Vitetta, Ellen S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (25) :8697-8702
[8]   Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities [J].
Cheng, Zhiliang ;
Al Zaki, Ajlan ;
Hui, James Z. ;
Muzykantov, Vladimir R. ;
Tsourkas, Andrew .
SCIENCE, 2012, 338 (6109) :903-910
[9]   Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors [J].
Diop-Frimpong, Benjamin ;
Chauhan, Vikash P. ;
Krane, Stephen ;
Boucher, Yves ;
Jain, Rakesh K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (07) :2909-2914
[10]  
DVORAK HF, 1986, NEW ENGL J MED, V315, P1650