A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite

被引:159
作者
Jiao, Handong [1 ]
Wang, Chen [1 ]
Tu, Jiguo [1 ]
Tian, Donghua [1 ]
Jiao, Shuqiang [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
关键词
ENERGY-STORAGE; ALUMINUM; LIQUID; ELECTRODEPOSITION;
D O I
10.1039/c6cc09825h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new Al-ion battery based on an affordable and nontoxic liquid electrolyte made from molten AlCl3/urea was assembled. As the cathode material, natural graphite shows two well-defined discharge voltage plateaus at about 1.9 and 1.5 V with a high specific capacity of 93 mA h g(-1) and excellent coulombic efficiency (> 99%). The attractive capacity (about 78 mA h g(-1)) is retained even at a high current density of 1000 mA g(-1). Moreover, no faster fading in capacity is observed after 500 cycles. This electrolyte could provide a new system for Al-ion batteries, which can be used for large scale energy storage, owing to its cost advantages, high-rate capability and durability.
引用
收藏
页码:2331 / 2334
页数:4
相关论文
共 26 条
[1]   Aluminium electrodeposition under ambient conditions [J].
Abbott, Andrew P. ;
Harris, Robert C. ;
Hsieh, Yi-Ting ;
Ryder, Karl S. ;
Sun, I-Wen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) :14675-14681
[2]   Do all ionic liquids need organic cations? Characterisation of [AlCl2•nAmide]+ AlCl4- and comparison with imidazolium based systems [J].
Abood, Hadi M. A. ;
Abbott, Andrew P. ;
Ballantyne, Andrew D. ;
Ryder, Karl S. .
CHEMICAL COMMUNICATIONS, 2011, 47 (12) :3523-3525
[3]   High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte [J].
Balducci, A. ;
Dugas, R. ;
Taberna, P. L. ;
Simon, P. ;
Plee, D. ;
Mastragostino, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :922-927
[4]   Energy storage for mitigating the variability of renewable electricity sources: An updated review [J].
Beaudin, Marc ;
Zareipour, Hamidreza ;
Schellenberglabe, Anthony ;
Rosehart, William .
ENERGY FOR SUSTAINABLE DEVELOPMENT, 2010, 14 (04) :302-314
[5]   Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries [J].
Darling, Robert M. ;
Gallagher, Kevin G. ;
Kowalski, Jeffrey A. ;
Ha, Seungbum ;
Brushett, Fikile R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3459-3477
[6]   Redox flow cells for energy conversion [J].
de Leon, C. Ponce ;
Frias-Ferrer, A. ;
Gonzalez-Garcia, J. ;
Szanto, D. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :716-732
[7]   A review of energy storage technologies for wind power applications [J].
Diaz-Gonzalez, Francisco ;
Sumper, Andreas ;
Gomis-Bellmunt, Oriol ;
Villafafila-Robles, Roberto .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (04) :2154-2171
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries [J].
Fukunaga, Atsushi ;
Nohira, Toshiyuki ;
Kozawa, Yu ;
Hagiwara, Rika ;
Sakai, Shoichiro ;
Nitta, Koji ;
Inazawa, Shinji .
JOURNAL OF POWER SOURCES, 2012, 209 :52-56
[10]   An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite [J].
Hardwick, Laurence J. ;
Hahn, Matthias ;
Ruch, Patrick ;
Holzapfel, Michael ;
Scheifele, Werner ;
Buqa, Hilmi ;
Krumeich, Frank ;
Novak, Petr ;
Koetz, Ruediger .
ELECTROCHIMICA ACTA, 2006, 52 (02) :675-680