Confidence regions for high quantiles of a heavy tailed distribution

被引:25
作者
Peng, Liang [1 ]
Qi, Yongcheng
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
关键词
confidence region; data tilting; empirical likelihood method; heavy tail; high quantile;
D O I
10.1214/009053606000000416
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating high quantiles plays an important role in the context of risk management. This involves extrapolation of an unknown distribution function. In this paper we propose three methods, namely, the normal approximation method, the likelihood ratio method and the data tilting method, to construct confidence regions for high quantiles of a heavy tailed distribution. A simulation study prefers the data tilting method.
引用
收藏
页码:1964 / 1986
页数:23
相关论文
共 25 条
[1]   USING EXTREME VALUE THEORY TO ESTIMATE LARGE PERCENTILES [J].
BOOS, DD .
TECHNOMETRICS, 1984, 26 (01) :33-39
[2]   Asymptotic expansions of estimators for the tail index with applications [J].
Cheng, SH ;
Pan, JZ .
SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) :717-728
[3]  
Danielsson J., 1997, J Empir Finance, V4, P241, DOI [10.1016/S0927-5398(97)00008-X, DOI 10.1016/S0927-5398(97)00008-X]
[4]   Comparison of tail index estimators [J].
de Haan, L ;
Peng, L .
STATISTICA NEERLANDICA, 1998, 52 (01) :60-70
[5]   Generalized regular variation of second order [J].
DeHaan, L ;
Stadtmuller, U .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 :381-395
[6]   EMPIRICAL LIKELIHOOD IS BARTLETT-CORRECTABLE [J].
DICICCIO, T ;
HALL, P ;
ROMANO, J .
ANNALS OF STATISTICS, 1991, 19 (02) :1053-1061
[7]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI 10.1007/978-3-642-33483-2
[8]   On optimising the estimation of high quantiles of a probability distribution [J].
Ferreira, A ;
De Haan, L ;
Peng, L .
STATISTICS, 2003, 37 (05) :401-434
[9]   Generalizations of the Hill estimator - asymptotic versus finite sample behaviour [J].
Gomes, MI ;
Martins, MJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 93 (1-2) :161-180
[10]  
GRENANDER U., 1956, Skand. Aktuarietidskr., V39, P125