Quasispectra of solvable Lie algebra homomorphisms into Banach algebras

被引:6
作者
Dosiev, Anar [1 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
quasispectra; solvable Lie algebra; functional calculus; joint spectral radius;
D O I
10.4064/sm174-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a noncommutative holomorphic functional calculus on absolutely convex domains for a Banach algebra homomorphism pi of a finite-dimensional solvable Lie algebra g in terms of quasispectra sigma(pi). In particular, we prove that the joint spectral radius of a compact subset in a solvable operator Lie subalgebra coincides with the geometric spectral radius with respect to,a quasispectrum.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
[31]   Antinilpotent Lie algebras [J].
Gorbatsevich, VV .
MATHEMATICAL NOTES, 2005, 78 (5-6) :749-756
[32]   Antinilpotent Lie Algebras [J].
V. V. Gorbatsevich .
Mathematical Notes, 2005, 78 :749-756
[33]   ON THE GROUP OF LIE-ORTHOGONAL OPERATORS ON A LIE ALGEBRA [J].
Bilun, S. V. ;
Maksimenko, D. V. ;
Petravchuk, A. P. .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (03) :199-203
[34]   Novikov algebras and Novikov structures on Lie algebras [J].
Burde, Dietrich ;
Dekimpe, Karel ;
Vercammen, Kim .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) :31-41
[35]   On solvable Lie groups of negative Ricci curvature [J].
Nikolayevsky, Y. ;
Nikonorov, Yu. G. .
MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) :1-16
[36]   On solvable Lie groups of negative Ricci curvature [J].
Y. Nikolayevsky ;
Yu. G. Nikonorov .
Mathematische Zeitschrift, 2015, 280 :1-16
[37]   Roots in Operator and Banach Algebras [J].
David P. Blecher ;
Zhenhua Wang .
Integral Equations and Operator Theory, 2016, 85 :63-90
[38]   Roots in Operator and Banach Algebras [J].
Blecher, David P. ;
Wang, Zhenhua .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (01) :63-90
[39]   Solvable symmetric Poisson algebras and their derived lengths [J].
Siciliano, Salvatore .
JOURNAL OF ALGEBRA, 2020, 543 :98-110
[40]   REPRESENTATIONS OF C*-ALGEBRAS IN DUAL & RIGHT DUAL BANACH ALGEBRAS [J].
Spain, Philip G. .
HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (01) :231-263