Quasispectra of solvable Lie algebra homomorphisms into Banach algebras

被引:6
作者
Dosiev, Anar [1 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
quasispectra; solvable Lie algebra; functional calculus; joint spectral radius;
D O I
10.4064/sm174-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a noncommutative holomorphic functional calculus on absolutely convex domains for a Banach algebra homomorphism pi of a finite-dimensional solvable Lie algebra g in terms of quasispectra sigma(pi). In particular, we prove that the joint spectral radius of a compact subset in a solvable operator Lie subalgebra coincides with the geometric spectral radius with respect to,a quasispectrum.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
[11]   Computing the test rank of a free solvable Lie algebra [J].
Timoshenko, E. I. ;
Shevelin, M. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (06) :1131-1135
[12]   Computing the test rank of a free solvable Lie algebra [J].
E. I. Timoshenko ;
M. A. Shevelin .
Siberian Mathematical Journal, 2008, 49 :1131-1135
[13]   HOMOMORPHISMS AND FUNCTIONAL CALCULUS IN ALGEBRAS OF ENTIRE FUNCTIONS ON BANACH SPACES [J].
Pryimak, H. M. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (01) :108-113
[14]   Product structures on four dimensional solvable Lie algebras [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. G. ;
Ovando, G. P. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2005, 7 (01) :9-37
[15]   SOLVABLE EXTENSIONS OF A SPECIAL CLASS OF NILPOTENT LIE ALGEBRAS [J].
Shabanskaya, A. ;
Thompson, G. .
ARCHIVUM MATHEMATICUM, 2013, 49 (03) :141-159
[16]   SOLVABLE INDECOMPOSABLE EXTENSIONS OF TWO NILPOTENT LIE ALGEBRAS [J].
Shabanskaya, A. .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) :3626-3667
[17]   Computational calculus of the law of a family of solvable Lie algebras [J].
Benjumeaa, J. C. ;
Morales, M. D. ;
Nunes, J. ;
Tenorio, A. F. .
JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2012, 12 (03) :189-198
[18]   Solvable Lie algebra condition for stability of linear multidimensional systems [J].
Chu, TG ;
Zhang, CS ;
Wang, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (02) :320-324
[19]   Open orbits and primitive zero ideals for solvable Lie algebras [J].
Baklouti, Ali ;
Ishi, Hideyuki .
FORUM MATHEMATICUM, 2024, 36 (03) :571-584
[20]   Abelian Subalgebras in Low-Dimensional Solvable Lie Algebras [J].
Ceballos, Manuel ;
Nunez, Juan ;
Tenorio, Angel F. .
RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, :151-+