Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy

被引:294
作者
Leger, Bertrand
Cartoni, Romain
Praz, Manu
Lamon, Severine
Deriaz, Olivier
Crettenand, Antoinette
Gobelet, Charles
Rohmer, Paul
Konzelmann, Michel
Luthi, Francois
Russell, Aaron P.
机构
[1] Sion Hosp, Clin Romande Readaptat SUVA Care, CH-1951 Sion, Switzerland
[2] Sion Hosp, Dept Radiol, CH-1951 Sion, Switzerland
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2006年 / 576卷 / 03期
关键词
D O I
10.1113/jphysiol.2006.116715
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho-Akt and several of its downstream anabolic targets (glycogen synthase kinase-3 beta (GSK-3 beta), mTOR, p70(s6k) and 4E-BP1) and catabolic targets (Foxo1, Foxo3, atrogin-1 and MuRF1). All measurements were performed in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. Following resistance training a muscle hypertrophy (similar to 10%) and an increase in phospho-Akt, phospho-GSK-3 beta and phospho-mTOR protein content were observed. This was paralleled by a decrease in Foxo1 nuclear protein content. Following the de-training period a muscle atrophy (5%), relative to the post-training muscle size, a decrease in phospho-Akt and GSK-3 beta and an increase in Foxo1 were observed. Atrogin-1 and MuRF1 increased after the hypertrophy and decreased after the atrophy phases. We demonstrate, for the first time in human skeletal muscle, that the regulation of Akt and its downstream signalling pathways GSK-3 beta, mTOR and Foxo1 are associated with both the skeletal muscle hypertrophy and atrophy processes.
引用
收藏
页码:923 / 933
页数:11
相关论文
共 53 条
[1]  
ANDERSON T, 1982, RES Q EXERCISE SPORT, V53, P1
[2]   Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation [J].
Atherton, PJ ;
Babraj, JA ;
Smith, K ;
Singh, J ;
Rennie, MJ ;
Wackerhage, H .
FASEB JOURNAL, 2005, 19 (02) :786-+
[3]   Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation [J].
Baldi, JC ;
Jackson, RD ;
Moraille, R ;
Mysiw, WJ .
SPINAL CORD, 1998, 36 (07) :463-469
[4]   Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J].
Bodine, SC ;
Stitt, TN ;
Gonzalez, M ;
Kline, WO ;
Stover, GL ;
Bauerlein, R ;
Zlotchenko, E ;
Scrimgeour, A ;
Lawrence, JC ;
Glass, DJ ;
Yancopoulos, GD .
NATURE CELL BIOLOGY, 2001, 3 (11) :1014-1019
[5]   Identification of ubiquitin ligases required for skeletal muscle atrophy [J].
Bodine, SC ;
Latres, E ;
Baumhueter, S ;
Lai, VKM ;
Nunez, L ;
Clarke, BA ;
Poueymirou, WT ;
Panaro, FJ ;
Na, EQ ;
Dharmarajan, K ;
Pan, ZQ ;
Valenzuela, DM ;
DeChiara, TM ;
Stitt, TN ;
Yancopoulos, GD ;
Glass, DJ .
SCIENCE, 2001, 294 (5547) :1704-1708
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty [J].
Burgering, BMT ;
Medema, RH .
JOURNAL OF LEUKOCYTE BIOLOGY, 2003, 73 (06) :689-701
[8]   Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones [J].
Campos, GER ;
Luecke, TJ ;
Wendeln, HK ;
Toma, K ;
Hagerman, FC ;
Murray, TF ;
Ragg, KE ;
Ratamess, NA ;
Kraemer, WJ ;
Staron, RS .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2002, 88 (1-2) :50-60
[9]   Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise [J].
Cartoni, R ;
Léger, B ;
Hock, MB ;
Praz, M ;
Crettenand, A ;
Pich, S ;
Ziltener, JL ;
Luthi, F ;
Dériaz, O ;
Zorzano, A ;
Gobelet, C ;
Kralli, A ;
Russell, AP .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 567 (01) :349-358
[10]   Combined endurance/resistance training reduces plasma TNF-α receptor levels in patients with chronic heart failure and coronary artery disease [J].
Conraads, VM ;
Beckers, P ;
Bosmans, J ;
De Clerck, LS ;
Stevens, WJ ;
Vrints, CJ ;
Brutsaert, DL .
EUROPEAN HEART JOURNAL, 2002, 23 (23) :1854-1860