Modelling and Analysis of Temporal Gene Expression Data Using Spiking Neural Networks

被引:2
|
作者
Nandini, Durgesh [1 ]
Capecci, Elisa [2 ]
Koefoed, Lucien [2 ]
Lana, Ibai [3 ]
Shahi, Gautam Kishore [1 ]
Kasabov, Nikola [2 ]
机构
[1] Univ Trento, Dipartimento Ingn & Sci Informaz DISI, Via Sommar 9, I-38100 Trento, TN, Italy
[2] Auckland Univ Technol AUT, Knowledge Engn & Discovery Res Inst KEDRI, AUT Tower,Level 7,Cnr Rutland & Wakefield St, Auckland 1010, New Zealand
[3] TECNALIA, OPTIMA Unit, P Tecnol Bizkaia,Ed 700, Derio 48160, Spain
来源
NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I | 2018年 / 11301卷
关键词
Spiking neural networks; Gene interaction networks; Gene expression; Microarray; Transcriptome data analysis; FEATURE-SELECTION; NEUCUBE; BRAIN;
D O I
10.1007/978-3-030-04167-0_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis of temporal gene expression data poses a significant challenge due to the combination of high dimensionality and low sample size. The purpose of this paper is to present a methodology for classification, modelling, and analysis of short time-series gene expression data using spiking neural networks (SNN) and to uncover temporal expression patterns for knowledge discovery. The classification is based on the NeuCube SNN model. Time-series gene expression data of mouse primary cortical neurons is examined as a case study. The results of the analysis are promising, indicating that SNN methodologies can be effectively used to model and analyse temporal gene expression data with surpassing performance over traditional machine learning algorithms. Additionally, a gene interaction network is constructed from the temporal gene activity modelled using the NeuCube architecture offering a new way of knowledge discovery. Future work will be directed towards using gene interactions networks to help guide pharmacological research for dementia.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 50 条
  • [1] Modelling gene interaction networks from time-series gene expression data using evolving spiking neural networks
    Elisa Capecci
    Jesus L. Lobo
    Ibai Laña
    Josafath I. Espinosa-Ramos
    Nikola Kasabov
    Evolving Systems, 2020, 11 : 599 - 613
  • [2] Modelling gene interaction networks from time-series gene expression data using evolving spiking neural networks
    Capecci, Elisa
    Lobo, Jesus L.
    Lana, Ibai
    Espinosa-Ramos, Josafath I.
    Kasabov, Nikola
    EVOLVING SYSTEMS, 2020, 11 (04) : 599 - 613
  • [3] Spiking Neural Networks for Cancer Gene Expression Time Series Modelling and Analysis
    Dray, Jack
    Capecci, Elisa
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 625 - 634
  • [4] Neural networks and temporal gene expression data
    Krishna, A
    Narayanan, A
    Keedwell, EC
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2005, 3449 : 64 - 73
  • [5] Analysis, Classification and Marker Discovery of Gene Expression Data with Evolving Spiking Neural Networks
    Shahi, Gautam Kishore
    Bilbao, Imanol
    Capecci, Elisa
    Nandini, Durgesh
    Choukri, Maria
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 517 - 527
  • [6] Analysis of gene expression data using convolutional neural networks
    Koudijs, Karel K. M.
    Guchelaar, Henk-Jan
    Bohringer, Stefan
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 14 - 14
  • [7] Temporal data encoding and SequenceLearning with spiking neural networks
    Fujii, Robert H.
    Oozeki, Kenjyu
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 780 - 789
  • [8] Personalised modelling with spiking neural networks integrating temporal and static information
    Doborjeh, Maryam
    Kasabov, Nikola
    Doborjeh, Zohreh
    Enayatollahi, Reza
    Tu, Enmei
    Gandomi, Amir H.
    NEURAL NETWORKS, 2019, 119 : 162 - 177
  • [9] Modelling gene regulatory data using artificial neural networks
    Keedwell, E
    Narayanan, A
    Savic, D
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 183 - 188
  • [10] Modelling formulations using gene expression programming - A comparative analysis with artificial neural networks
    Colbourn, E. A.
    Roskilly, S. J.
    Rowe, R. C.
    York, P.
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2011, 44 (03) : 366 - 374