Uniform global asymptotic stability of differential inclusions

被引:24
作者
Angeli, D
Ingalls, B
Sontag, ED
Wang, Y
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[3] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[4] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
基金
美国国家科学基金会;
关键词
differential inclusions; control systems; stability; partial detectability;
D O I
10.1023/B:JODS.0000034437.54937.7f
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stability of differential inclusions defined by locally Lipschitz compact valued mappings is considered. It is shown that if such a differential inclusion is globally asymptotically stable, then, in fact, it is uniformly globally asymptotically stable (with respect to initial states in compacts). This statement is trivial for differential equations, but here we provide the extension to compact- (not necessarily convex-) valued differential inclusions. The main result is presented in a context which is useful for control-theoretic applications: a differential inclusion with two outputs is considered, and the result applies to the property of global error detectability.
引用
收藏
页码:391 / 412
页数:22
相关论文
共 18 条
[1]   Continuous control-Lyapunov functions for asymptotically controllable time-varying systems [J].
Albertini, F ;
Sontag, ED .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (18) :1630-1641
[2]   Forward completeness, unboundedness observability, and their Lyapunov characterizations [J].
Angeli, D ;
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 1999, 38 (4-5) :209-217
[3]  
Angeli D, 2001, IEEE DECIS CONTR P, P881, DOI 10.1109/CDC.2001.980218
[4]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[5]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI, V264
[6]  
Clarke FH., 1998, Nonsmooth Analysis and Control Theory
[7]  
Colombo RM., 1991, Funkc. Ekvacioj, V34, P321
[8]  
Deimling K., 1992, MULTIVALUED DIFFEREN, DOI DOI 10.1515/9783110874228
[9]  
Filippov A.F., 1988, MATH ITS APPL SOVIET, V18
[10]   CONTINUOUS VERSION OF FILIPPOV-WAZEWSKI RELAXATION THEOREM [J].
FRYSZOWSKI, A ;
RZEZUCHOWSKI, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :254-265