Unsupervised Classification of Intrusive Igneous Rock Thin Section Images using Edge Detection and Colour Analysis

被引:0
|
作者
Joseph, S. [1 ]
Ujir, H. [2 ]
Hipiny, I. [2 ]
机构
[1] Kementerian Sumber Asli & Alam Sekitar, Jabatan Mineral & Geosains Sarawak, Kuching, Sarawak, Malaysia
[2] Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan, Sarawak, Malaysia
关键词
Minerals; Classification; Igneous Rocks; Edge Detection; Colour Analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.
引用
收藏
页码:530 / 534
页数:5
相关论文
共 50 条
  • [21] Automatic classification of volcanic rocks from thin section images using transfer learning networks
    Polat, Ozlem
    Polat, Ali
    Ekici, Taner
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18): : 11531 - 11540
  • [22] Automatic classification of volcanic rocks from thin section images using transfer learning networks
    Özlem Polat
    Ali Polat
    Taner Ekici
    Neural Computing and Applications, 2021, 33 : 11531 - 11540
  • [23] Analysis and classification of tissue section images using directional fractal dimension features
    Shang, CJ
    Daly, C
    McGrath, J
    Barker, J
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 164 - 167
  • [24] Unsupervised merger detection and mitigation in still images using frequency and color content analysis
    Banerjee, S
    Evans, BL
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 549 - 552
  • [25] Colour texture analysis using co-occurrence matrices for classification of colon cancer images
    Shuttleworth, JK
    Todman, AG
    Naguib, RNG
    Newman, BM
    Bennett, MK
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1134 - 1139
  • [26] Analysis of Rock Abundance on Lunar Surface From Orbital and Descent Images Using Automatic Rock Detection
    Li, Yuan
    Wu, Bo
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2018, 123 (05) : 1061 - 1088
  • [27] Wavelet-Based Edge Detection Using Local Histogram Analysis in Images
    Park, Min Joon
    Kwon, Min Jun
    Kim, Gi Hun
    Shim, Han Seul
    Kim, Dong Wook
    Lim, Dong Hoon
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (02) : 359 - 371
  • [28] Curvature based analysis of pulmonary nodules using thin-section CT images
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Kakinuma, R
    Mori, K
    Eguchi, E
    Kaneko, M
    Moriyama, N
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 361 - 363
  • [29] Roughness Determination of Ultra Thin Multilayer Coatings in Cross-Section Images with Poor SNR Using Edge Localization
    Braeuer-Burchardt, Christian
    Schroeder, Sven
    Trost, Marcus
    Kuehmstedt, Peter
    Duparre, Angela
    Notni, Gunther
    2009 PROCEEDINGS OF 6TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2009), 2009, : 180 - 185
  • [30] Automated strabismus detection and classification using deep learning analysis of facial images
    Mahsa Yarkheir
    Motahhareh Sadeghi
    Hamed Azarnoush
    Mohammad Reza Akbari
    Elias Khalili Pour
    Scientific Reports, 15 (1)