A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality

被引:58
|
作者
Gao, Fashun [1 ]
Yang, Minbo [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Tinhua 321004, Zhejiang, Peoples R China
关键词
Choquard equation; Hardy-Littlewood-Sobolev inequality; critical growth; strongly indefinite problem; SCHRODINGER-EQUATION; NONTRIVIAL SOLUTION; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE; UNIQUENESS;
D O I
10.1142/S0219199717500377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following nonlinear Choquard equation -Delta u + V(x)u = (integral(RN) G(y,u)/vertical bar x-y vertical bar(mu)dy) g(x, u) in R-N, where N >= 4, 0 < mu < N and G(x, u) = integral(u)(0) g(x, s)ds. If 0 lies in a gap of the spectrum of -Delta+V and g(x, u) is of critical growth due to the Hardy-Littlewood-Sobolev inequality, we obtain the existence of nontrivial solutions by variational methods. The main result here extends and complements the earlier theorems obtained in [N. Ackermann, On a periodic Schrodinger equation with nonlocal superlinear part, Math. Z. 248 (2004) 423-443; B. Buffoni, L. Jeanjean and C. A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993) 179-186; V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015) 6557-6579].
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Bueno, H.
    da Hora Lisboa, N.
    Vieira, L. L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [2] Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Yang, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [3] Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Hu, Tingxi
    Peng, Shuangjie
    Shuai, Wei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [4] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [5] Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent
    Moroz, Vitaly
    Van Schaftingen, Jean
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (05)
  • [6] On the Kirchhoff type Choquard problem with Hardy-Littlewood-Sobolev critical exponent
    Rui, Jie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)
  • [7] EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A PERTURBATION OF CHOQUARD EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV UPPER CRITICAL EXPONENT
    Su, Yu
    Chen, Haibo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [8] Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Li, Qi
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [9] Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
    Guan, Wen
    Radulescu, Vicentiu D.
    Wang, Da-Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 355 : 219 - 247
  • [10] Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent
    Cassani, Daniele
    Van Schaftingen, Jean
    Zhang Jianjun
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) : 1377 - 1400