Multilevel methods in space and time for the Navier-Stokes equations

被引:25
|
作者
Burie, JB [1 ]
Marion, M [1 ]
机构
[1] ECOLE CENT LYON,DEPT MATH INFORMAT SYST,F-69131 ECULLY,FRANCE
关键词
multilevel methods; Galerkin method; Navier-Stokes equations;
D O I
10.1137/S0036142994267989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the discretization in time of numerical schemes based on multilevel spatial splittings for the two-dimensional periodic Navier-Stokes equations. The approximate solution is computed as the sum of a low frequency component and a high frequency one. These two terms are advanced in time using different stepsizes. We show improved stability conditions (with respect to the classical Galerkin method). We derive error estimates that indicate that the high frequency term can be integrated less often. We address implementation issues and show that the method should yield a significant gain in computing time.
引用
收藏
页码:1574 / 1599
页数:26
相关论文
共 50 条
  • [31] Multilevel Monte Carlo Simulation of Statistical Solutions to the Navier-Stokes Equations
    Barth, Andrea
    Schwab, Christoph
    Sukys, Jonas
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 209 - 227
  • [32] Time analyticity for the heat equation and Navier-Stokes equations
    Dong, Hongjie
    Zhang, Qi S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (04)
  • [34] Incompressible limits of the Navier-Stokes equations for all time
    Ou, Yaobin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (12) : 3295 - 3314
  • [35] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [36] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [37] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [38] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [39] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [40] Stabilization of Navier-Stokes Equations
    Barbu, Viorel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 107 - 116