Multilevel methods in space and time for the Navier-Stokes equations

被引:25
|
作者
Burie, JB [1 ]
Marion, M [1 ]
机构
[1] ECOLE CENT LYON,DEPT MATH INFORMAT SYST,F-69131 ECULLY,FRANCE
关键词
multilevel methods; Galerkin method; Navier-Stokes equations;
D O I
10.1137/S0036142994267989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the discretization in time of numerical schemes based on multilevel spatial splittings for the two-dimensional periodic Navier-Stokes equations. The approximate solution is computed as the sum of a low frequency component and a high frequency one. These two terms are advanced in time using different stepsizes. We show improved stability conditions (with respect to the classical Galerkin method). We derive error estimates that indicate that the high frequency term can be integrated less often. We address implementation issues and show that the method should yield a significant gain in computing time.
引用
收藏
页码:1574 / 1599
页数:26
相关论文
共 50 条
  • [1] Galerkin and subspace decomposition methods in space and time for the Navier-Stokes equations
    He, Yinnian
    Hou, Yanren
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (10) : 3218 - 3231
  • [2] Time and Space parallelization of the Navier-Stokes equations
    Albarreal Nunez, Isidoro I.
    Calzada Canalejo, M. Carmen
    Cruz Soto, Jose Luis
    Fernandez Cara, Enrique
    Galo Sanchez, Jose R.
    Marin Beltran, Mercedes
    COMPUTATIONAL & APPLIED MATHEMATICS, 2005, 24 (03): : 417 - 438
  • [3] MULTILEVEL BDDC FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Hanek, Martin
    Sistek, Jakub
    Burda, Pavel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : C359 - C383
  • [4] A two-level method in space and time for the Navier-Stokes equations
    Liu, Qingfang
    Hou, Yanren
    Liu, Qingchang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1504 - 1521
  • [5] Global in time solvability of the Navier-Stokes equations in the half-space
    Chang, Tongkeun
    Jin, Bum Ja
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) : 4293 - 4319
  • [6] Energy methods for fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 78 - 85
  • [7] CONVERGENCE OF FOURIER METHODS FOR THE NAVIER-STOKES EQUATIONS
    WEINAN, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) : 650 - 674
  • [8] On multigrid methods for the compressible Navier-Stokes equations
    Drikakis, D
    Iliev, O
    Vassileva, D
    LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 344 - 352
  • [9] MULTILEVEL FINITE VOLUME METHODS FOR 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Djoko, J. K.
    Gidey, H. H.
    Reddy, B. D.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (04) : 485 - 516
  • [10] An Approach to Time Integration of the Navier-Stokes Equations
    Zhukov, V. T.
    Novikova, N. D.
    Feodoritova, O. B.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (02) : 272 - 285