Magnetically Aligned Nanodomains: Application in High-Performance Ion Conductive Membranes

被引:36
作者
Hasani-Sadrabadi, Mohammad Mandi [1 ,2 ,3 ,4 ,5 ]
Majedi, Fatemeh Sadat [5 ]
Coullerez, Geraldine [4 ]
Dashtimoghadam, Erfan [6 ]
VanDersarl, Jules John [3 ]
Bertsch, Arnaud [3 ]
Moaddel, Homayoun [7 ]
Jacob, Karl I. [1 ,2 ]
Renaud, Philippe [3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Ecole Polytech Fed Lausanne, Lab Microsyst LMIS4, Inst Microengn, Stn 17, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Lab Powder Technol, Inst Mat, Stn 17, CH-1015 Lausanne, Switzerland
[5] Amirkabir Univ Technol, Ctr Excellence Biomat, Dept Biomed Engn, Tehran 158754413, Iran
[6] Amirkabir Univ Technol, Dept Polymer Engn & Color Technol, Tehran 158754413, Iran
[7] Hydrogen & Fuel Cell Inc, Arcadia, CA 91006 USA
关键词
polymer-decorating nanoparticles; SPION; aligned nanodomains; nanocomposite membranes; proton conductivity; fuel cell; POLYELECTROLYTE MEMBRANES; PROTON; NANOPARTICLES; ALIGNMENT; NANOCHANNELS; TRANSPORT;
D O I
10.1021/am406042w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polyelectrolyte-coated magnetic nanoparticles were prepared by decorating the surface of superparamagnetic iron oxide nanoparticles (SPIONs) with crosslinked chitosan oligopolysaccharide (CS). These positively charged particles (CS-SPIONs) were then added to a negatively charged polymer (Nafion), and cast into membranes under an applied magnetic field. TEM and SAXS measurements confirmed this process created aligned, cylindrical nanodomains in the membranes. This was also indirectly confirmed by proton conductivity values. The strong electrostatic interaction between chitosan and Nafion prevented oxygen permeability and water evaporation at elevated temperatures through the proton conductive channels. The resultant proton exchange membranes showed lower conduction dependency to relative humidity, which is highly desirable for hydrogen fuel cells. The fuel cell performance tests were performed on the designed polyelectrolyte membrane by hydrogen oxygen single cells at elevated temperature (120 degrees C) and low relative humidity.
引用
收藏
页码:7099 / 7107
页数:9
相关论文
共 41 条
  • [1] Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells
    Adjemian, KT
    Dominey, R
    Krishnan, L
    Ota, H
    Majsztrik, P
    Zhang, T
    Mann, J
    Kirby, B
    Gatto, L
    Velo-Simpson, M
    Leahy, J
    Srinivasant, S
    Benziger, JB
    Bocarsly, AB
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (09) : 2238 - 2248
  • [2] Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
    Bose, Saswata
    Kuila, Tapas
    Thi Xuan Lien Nguyen
    Kim, Nam Hoon
    Lau, Kin-tak
    Lee, Joong Hee
    [J]. PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) : 813 - 843
  • [3] Magnetic ion-exchange nanoparticles and their application in proton exchange membranes
    Brijmohan, Smita B.
    Shaw, Montgomery T.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2007, 303 (1-2) : 64 - 71
  • [4] Bureekaew S, 2009, NAT MATER, V8, P831, DOI [10.1038/NMAT2526, 10.1038/nmat2526]
  • [5] Membranes with oriented polyelectrolyte nanodomains
    Chen, Hong
    Palmese, Giuseppe R.
    Elabd, Yossef A.
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4875 - 4881
  • [6] Chen YB, 2010, NAT CHEM, V2, P503, DOI [10.1038/nchem.629, 10.1038/NCHEM.629]
  • [7] Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes
    Choi, Bong Gill
    Hong, Jinkee
    Park, Young Chul
    Jung, Doo Hwan
    Hong, Won Hi
    Hammond, Paula T.
    Park, HoSeok
    [J]. ACS NANO, 2011, 5 (06) : 5167 - 5174
  • [8] Proton channels
    Diat, Olivier
    Gebel, Gerard
    [J]. NATURE MATERIALS, 2008, 7 (01) : 13 - 14
  • [9] Doan Thi Kim D., 2009, J PHYS C SER, V187
  • [10] Super Proton Conductive High-Purity Nafion Nanofibers
    Dong, Bin
    Gwee, Liang
    Salas-de la Cruz, David
    Winey, Karen I.
    Elabd, Yossef A.
    [J]. NANO LETTERS, 2010, 10 (09) : 3785 - 3790