Entanglement versus chaos in disordered spin chains

被引:91
作者
Santos, LF [1 ]
Rigolin, G
Escobar, CO
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, Dept Raios Cosm & Cronol, BR-13084971 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.69.042304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use a Heisenberg spin-1/2 chain to investigate how chaos and localization may affect the entanglement of pairs of qubits. To measure how much entangled a pair is, we compute its concurrence, which is then analyzed in the delocalized (localized) and in the chaotic (nonchaotic) regimes. Our results indicate that chaos reduces entanglement and that entanglement decreases in the region of strong localization. In the transition region from a chaotic to a nonchaotic regime localization increases entanglement. We also show that entanglement is larger for strongly interacting qubits (nearest neighbors) than for weakly interacting qubits (next and next-next neighbors).
引用
收藏
页码:042304 / 1
页数:6
相关论文
共 38 条
  • [11] Entanglement versus relaxation and decoherence in a quantum algorithm for quantum chaos
    Bettelli, S
    Shepelyansky, DL
    [J]. PHYSICAL REVIEW A, 2003, 67 (05): : 4
  • [12] Experimental quantum teleportation
    Bouwmeester, D
    Pan, JW
    Mattle, K
    Eibl, M
    Weinfurter, H
    Zeilinger, A
    [J]. NATURE, 1997, 390 (6660) : 575 - 579
  • [13] Dykman MI, 2000, FORTSCHR PHYS, V48, P1095, DOI 10.1002/1521-3978(200009)48:9/11<1095::AID-PROP1095>3.0.CO
  • [14] 2-U
  • [15] Antiresonance and interaction-induced localization in spin and qubit chains with defects
    Dykman, MI
    Santos, LF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (44): : L561 - L566
  • [16] Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A
    Podolsky, B
    Rosen, N
    [J]. PHYSICAL REVIEW, 1935, 47 (10): : 0777 - 0780
  • [17] Quantum chaos border for quantum computing
    Georgeot, B
    Shepelyansky, DL
    [J]. PHYSICAL REVIEW E, 2000, 62 (03) : 3504 - 3507
  • [18] Grover L. K., 1996, P 28 ANN ACM S THEOR, P212, DOI [DOI 10.1145/237814.237866, 10.1145/237814.237866]
  • [19] GROVER LK, QUANTPH9605043
  • [20] Guhr T, 1998, PHYS REP, V299, P190