Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials

被引:84
作者
Chang, Chao [1 ]
Nie, Xiao [1 ]
Li, Xiaoxiang [1 ]
Tao, Peng [1 ]
Fu, Benwei [1 ]
Wang, Zhongyong [1 ]
Xu, Jiale [1 ]
Ye, Qinxian [1 ]
Zhang, Jingyi [1 ]
Song, Chengyi [1 ]
Shang, Wen [1 ]
Deng, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE FOAM; STORAGE; CONDUCTIVITY; CONVERSION; CAPACITY; SYSTEM;
D O I
10.1039/d0ta07289c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting solar energy into storable thermal energy within organic phase change materials has emerged as a promising way to overcome solar intermittency and continuously harness solar-thermal energy for many heating-related applications. The low thermal conductivity and leakage issue of the phase change materials, however, limit scalable solar-thermal energy storage and their practical applications. Inspired by the dynamic thermoregulation behavior of butterfly wings, here we demonstrate rapid roll-to-roll solar-thermal energy harvesting within flexible form-stable composite phase change materials. Instead of static charging the bulk materials, the thin composite sheets are exposed to solar radiation for rapid charging while being continuously rolled. Due to shortened heat-diffusion distance and rollability of the composites, it achieves fast uniform solar-thermal energy storage within the bulk storage media. The flexibility of charged composites also enables broad tuning of the discharging behavior, and offers the possibility to explore wearable thermotherapy and other flexible solar-thermal applications.
引用
收藏
页码:20970 / 20978
页数:9
相关论文
共 44 条
[1]   Polyurethane-based flexible and conductive phase change composites for energy conversion and storage [J].
Aftab, Waseem ;
Mahmood, Asif ;
Guo, Wenhan ;
Yousaf, Muhammad ;
Tabassum, Hassina ;
Huang, Xinyu ;
Liang, Zibin ;
Cao, Anyuan ;
Zou, Ruqiang .
ENERGY STORAGE MATERIALS, 2019, 20 :401-409
[2]   Nanoconfined phase change materials for thermal energy applications [J].
Aftab, Waseem ;
Huang, Xinyu ;
Wu, Wenhao ;
Liang, Zibin ;
Mahmood, Asif ;
Zou, Ruqiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1392-1424
[3]   Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges [J].
Chen, Liangjie ;
Zou, Ruqiang ;
Xia, Wei ;
Liu, Zhenpu ;
Shang, Yuanyuan ;
Zhu, Jinlong ;
Wang, Yingxia ;
Lin, Jianhua ;
Xia, Dingguo ;
Cao, Anyuan .
ACS NANO, 2012, 6 (12) :10884-10892
[4]   Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy [J].
Choi, Suji ;
Park, Jinkyung ;
Hyun, Wonji ;
Kim, Jangwon ;
Kim, Jaemin ;
Lee, Young Bum ;
Song, Changyeong ;
Hwang, Hye Jin ;
Kim, Ji Hoon ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
ACS NANO, 2015, 9 (06) :6626-6633
[5]   BEHAVIORAL THERMOREGULATION IN BUTTERFLIES [J].
CLENCH, HK .
ECOLOGY, 1966, 47 (06) :1021-&
[6]  
Fan L, 2001, RENEW SUST ENERG REV, V15, P24
[7]   Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest [J].
Fasano, Matteo ;
Bigdeli, Masoud Bozorg ;
Sereshk, Mohammad Rasool Vaziri ;
Chiavazzo, Eliodoro ;
Asinari, Pietro .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 41 :1028-1036
[8]   Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review [J].
Gao, Hongyi ;
Wang, Jingjing ;
Chen, Xiao ;
Wang, Ge ;
Huang, Xiubing ;
Li, Ang ;
Dong, Wenjun .
NANO ENERGY, 2018, 53 :769-797
[9]   Optically-controlled long-term storage and release of thermal energy in phase-change materials [J].
Han, Grace G. D. ;
Li, Huashan ;
Grossman, Jeffrey C. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels [J].
Huang, Xinyu ;
Liu, Zhenpu ;
Xia, Wei ;
Zou, Ruqiang ;
Han, Ray P. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1935-1940