Detection of hypoxia and inflammatory processes in tissues by fluorescence spectroscopy in vivo

被引:0
|
作者
Petritskaya, E. [1 ]
Abaeva, L. [1 ]
Lapitan, D. [1 ]
Kulikov, D. [1 ]
Smirnova, O. [1 ]
Guseva, I. [1 ]
Rogatkin, D. [1 ]
机构
[1] Moscow Reg Res & Clin Inst MONIKI, Moscow 129110, Russia
来源
2014 INTERNATIONAL CONFERENCE LASER OPTICS | 2014年
关键词
fluorescence spectroscopy; tissue; noninvasive diagnostics; hypoxia; inflammatory processes; porphyrins;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
in experiments with the use of laser fluorescence spectroscopy (LFS) in vivo both for endogenous porphyrin at occlusive ischemia and for exogenous phthalocyanine of aluminum at induced inflammatory processes the enhanced autofluorescence in the red waveband was detected. It means that the LFS in vivo can be an effective tool for the registration of both the ischemic hypoxia and inflammatory processes in clinics.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Laser induced fluorescence attenuation spectroscopy: Detection of hypoxia
    Shehada, REN
    Marmarelis, VZ
    Mansour, HN
    Grundfest, WS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (03) : 301 - 312
  • [2] Fluorescence spectroscopy of neoplastic and non-neoplastic tissues
    Ramanujam, N
    NEOPLASIA, 2000, 2 (1-2): : 89 - 117
  • [3] Immunohistochemical detection of hypoxia in mouse liver tissues treated with pimonidazole using "in vivo cryotechnique"
    Terada, Nobuo
    Ohno, Nobuhiko
    Saitoh, Sei
    Ohno, Shinichi
    HISTOCHEMISTRY AND CELL BIOLOGY, 2007, 128 (03) : 253 - 261
  • [4] Immunohistochemical detection of hypoxia in mouse liver tissues treated with pimonidazole using “in vivo cryotechnique”
    Nobuo Terada
    Nobuhiko Ohno
    Sei Saitoh
    Shinichi Ohno
    Histochemistry and Cell Biology, 2007, 128 : 253 - 261
  • [5] Ultrasensitive near-infrared fluorescence probe activated by nitroreductase for in vivo hypoxia detection
    Lin, Qiao
    Li, Changsheng
    Wang, Lijun
    Cai, Huiming
    Tang, Liping
    Gu, Yueqing
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 371
  • [6] Fluorescence Spectroscopy for the Monitoring of Food Processes
    Ahmad, Muhammad Haseeb
    Sahar, Amna
    Hitzmann, Bernd
    MEASUREMENT, MODELING AND AUTOMATION IN ADVANCED FOOD PROCESSING, 2017, 161 : 121 - 151
  • [7] In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy
    Yadav, Nitin
    Bhatia, Sanjiv
    Ragheb, John
    Mehta, Rupal
    Jayakar, Prasanna
    Yong, William
    Lin, Wei-Chiang
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (02)
  • [8] Evaluation of inflammatory processes by FTIR spectroscopy
    Rodrigues L.M.
    Carvalho L.F.D.C.E.S.
    Bonnier F.
    Anbinder A.L.
    Martinho H.D.S.
    Almeida J.D.
    Journal of Medical Engineering and Technology, 2018, 42 (03) : 228 - 235
  • [9] Chronic hypoxia state as one of the factors of increased fluorescence of endogenous porphyrins in alive biological tissues
    Gorenkov, R. V.
    Karpov, V. N.
    Rogatkin, D. A.
    Shumski, V. I.
    BIOFIZIKA, 2007, 52 (04): : 711 - 717
  • [10] In vivo characterization of myocardial infarction using fluorescence and diffuse reflectance spectroscopy
    Ti, Yalin
    Chen, Poching
    Lin, Wei-Chiang
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (03)