The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis

被引:353
作者
Hunter, Zachary R. [1 ,2 ]
Xu, Lian [1 ]
Yang, Guang [1 ]
Zhou, Yangsheng [1 ]
Liu, Xia [1 ]
Cao, Yang [1 ]
Manning, Robert J. [1 ]
Tripsas, Christina [1 ]
Patterson, Christopher J. [1 ]
Sheehy, Patricia [1 ]
Treon, Steven P. [1 ,3 ]
机构
[1] Dana Farber Canc Inst, Bing Ctr Waldenstroms Macroglobulinemia, Boston, MA 02215 USA
[2] Boston Univ, Grad Sch Med Sci, Dept Pathol & Lab Med, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Boston, MA USA
关键词
ACUTE LYMPHOBLASTIC-LEUKEMIA; NF-KAPPA-B; CHRONIC LYMPHOCYTIC-LEUKEMIA; IGM MONOCLONAL GAMMOPATHY; BRUTONS TYROSINE KINASE; UNDETERMINED SIGNIFICANCE; TUMOR-SUPPRESSOR; RECEPTOR INTERNALIZATION; BINDING PROTEIN; TARGET GENES;
D O I
10.1182/blood-2013-09-525808
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The genetic basis for Waldenstrom macroglobulinemia (WM) remains to be clarified. Although 6q losses are commonly present, recurring gene losses in this region remain to be defined. We therefore performed whole genome sequencing (WGS) in 30 WM patients, which included germline/tumor sequencing for 10 patients. Validated somatic mutations occurring in >10% of patients includedMYD88, CXCR4, and ARID1A that were present in 90%, 27%, and 17% of patients, respectively, and included the activating mutation L265P in MYD88 and warts, hypogammaglobulinemia, infection, and myelokathexis-syndrome-like mutations in CXCR4 that previously have only been described in the germline. WGS also delineated copy number alterations (CNAs) and structural variants in the 10 paired patients. The CXCR4 and CNA findings were validated in independent expansion cohorts of 147 and 30WM patients, respectively. Validated gene losses due to CNAs involved PRDM2 (93%), BTG1 (87%), HIVEP2 (77%), MKLN1 (77%), PLEKHG1 (70%), LYN (60%), ARID1B (50%), and FOXP1 (37%). Losses in PLEKHG1, HIVEP2, ARID1B, and BCLAF1 constituted the most common deletions within chromosome 6. Although no recurrent translocations were observed, in 2 patients deletions in 6q corresponded with translocation events. These studies evidence highly recurring somatic events, and provide a genomic basis for understanding the pathogenesis of WM.
引用
收藏
页码:1637 / 1646
页数:10
相关论文
共 70 条
[21]   Regulators of G-Protein signaling RGS10 and RGS17 regulate chemoresistance in ovarian cancer cells [J].
Hooks, Shelley B. ;
Callihan, Phillip ;
Altman, Molly K. ;
Hurst, Jillian H. ;
Ali, Mourad W. ;
Murph, Mandi M. .
MOLECULAR CANCER, 2010, 9
[22]   A Genetic Screen Identifies Topoisomerase 1 as a Regulator of Senescence [J].
Humbert, Nicolas ;
Martien, Sebastien ;
Augert, Arnaud ;
Da Costa, Marco ;
Mauen, Sebastien ;
Abbadie, Corinne ;
de Launoit, Yvan ;
Gil, Jesus ;
Bernard, David .
CANCER RESEARCH, 2009, 69 (10) :4101-4106
[23]   Target genes of the largest human SWI/SNF complex subunit control cell growth [J].
Inoue, Hiroko ;
Giannakopoulos, Stavros ;
Parkhurst, Christopher N. ;
Matsumura, Tatsushi ;
Kono, Evelyn A. ;
Furukawa, Takako ;
Tanese, Naoko .
BIOCHEMICAL JOURNAL, 2011, 434 :83-92
[24]   Genome-wide Repression of NF-κB Target Genes by Transcription Factor MIBP1 and Its Modulation by O-Linked β-N-Acetylglucosamine (O-GlcNAc) Transferase [J].
Iwashita, Yuji ;
Fukuchi, Naruhiko ;
Waki, Mariko ;
Hayashi, Kenshi ;
Tahira, Tomoko .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (13) :9887-9900
[25]   Bruton's tyrosine kinase is a toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor κB activation by toll-like receptor 4 [J].
Jefferies, CA ;
Doyle, S ;
Brunner, C ;
Dunne, A ;
Brint, E ;
Wietek, C ;
Walch, E ;
Wirth, T ;
O'Neill, LAJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (28) :26258-26264
[26]   MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom's macroglobulinemia [J].
Jimenez, C. ;
Sebastian, E. ;
Chillon, M. C. ;
Giraldo, P. ;
Hernandez, J. Mariano ;
Escalante, F. ;
Gonzalez-Lopez, T. J. ;
Aguilera, C. ;
de Coca, A. G. ;
Murillo, I. ;
Alcoceba, M. ;
Balanzategui, A. ;
Sarasquete, M. E. ;
Corral, R. ;
Marin, L. A. ;
Paiva, B. ;
Ocio, E. M. ;
Gutierrez, N. C. ;
Gonzalez, M. ;
Miguel, J. F. San ;
Garcia-Sanz, R. .
LEUKEMIA, 2013, 27 (08) :1722-1728
[27]   Somatic Mutations in the Chromatin Remodeling Gene ARID1A Occur in Several Tumor Types [J].
Jones, Sian ;
Li, Meng ;
Parsons, D. Williams ;
Zhang, Xiaosong ;
Wesseling, Jelle ;
Kristel, Petra ;
Schmidt, Marjanka K. ;
Markowitz, Sanford ;
Yan, Hai ;
Bigner, Darell ;
Hruban, Ralph H. ;
Eshleman, James R. ;
Iacobuzio-Donahue, Christine A. ;
Goggins, Michael ;
Maitra, Anirban ;
Malek, Sami N. ;
Powell, Steve ;
Vogelstein, Bert ;
Kinzler, Kenneth W. ;
Velculescu, Victor E. ;
Papadopoulos, Nickolas .
HUMAN MUTATION, 2012, 33 (01) :100-103
[28]   Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses [J].
Karube, Kennosuke ;
Nakagawa, Masao ;
Tsuzuki, Shinobu ;
Takeuchi, Ichiro ;
Honma, Keiichiro ;
Nakashima, Yasuhiro ;
Shimizu, Norio ;
Ko, Young-Hyeh ;
Morishima, Yasuo ;
Ohshima, Koichi ;
Nakamura, Shigeo ;
Seto, Masao .
BLOOD, 2011, 118 (12) :3195-3204
[29]   High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression [J].
Kuiper, R. P. ;
Schoenmakers, E. F. P. M. ;
van Reijmersdal, S. V. ;
Hehir-Kwa, J. Y. ;
van Kessel, A. Geurts ;
van Leeuwen, F. N. ;
Hoogerbrugge, P. M. .
LEUKEMIA, 2007, 21 (06) :1258-1266
[30]   Long-term follow-up of IgM monoclonal gammopathy of undetermined significance [J].
Kyle, RA ;
Therneau, TM ;
Rajkumar, SV ;
Remstein, ED ;
Offord, JR ;
Larson, DR ;
Plevak, MF ;
Melton, LJ .
BLOOD, 2003, 102 (10) :3759-3764