Sample sizes for improved binomial confidence intervals

被引:28
作者
Piegorsch, WW [1 ]
机构
[1] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
关键词
Agresti-Coull interval; binomial probability; Jeffreys interval; sample size determination; score interval; Wald interval; Wilson interval;
D O I
10.1016/j.csda.2003.10.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sample size equations are reviewed for different types of confidence intervals on a binomial success probability. Based on recommendations for improved binomial confidence limits given by Brown et al. (Statist. Sci. 16 (2001) 101), the intervals expand upon or enhance the traditional Wald-type interval. Some useful sample size relations appear. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 21 条
[1]   Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures [J].
Agresti, A ;
Caffo, B .
AMERICAN STATISTICIAN, 2000, 54 (04) :280-288
[2]   Dealing with discreteness: making 'exact' confidence intervals for proportions, differences of proportions, and odds ratios more exact [J].
Agresti, A .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2003, 12 (01) :3-21
[3]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[4]  
Borwein P., 1995, Grad. Texts in Math., V161
[5]  
Brown LD, 2002, ANN STAT, V30, P160
[6]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[7]  
Casella G., 2002, STAT INFERENCE
[8]   The saw-toothed behavior of power versus sample size and software solutions: Single binomial proportion using exact methods [J].
Chernick, MR ;
Liu, CY .
AMERICAN STATISTICIAN, 2002, 56 (02) :149-155
[9]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[10]  
Descartes, 1637, GEOMETRIE