ByteTrack: Multi-object Tracking by Associating Every Detection Box

被引:670
|
作者
Zhang, Yifu [1 ]
Sun, Peize [2 ]
Jiang, Yi [3 ]
Yu, Dongdong [3 ]
Weng, Fucheng [1 ]
Yuan, Zehuan [3 ]
Luo, Ping [2 ]
Liu, Wenyu [1 ]
Wang, Xinggang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] Univ Hong Kong, Hong Kong, Peoples R China
[3] ByteDance Inc, Beijing, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT XXII | 2022年 / 13682卷
关键词
Multi-object tracking; Data association; Detection boxes; MULTITARGET;
D O I
10.1007/978-3-031-20047-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which brings non-negligible true object missing and fragmented trajectories. To solve this problem, we present a simple, effective and generic association method, tracking by associating almost every detection box instead of only the high score ones. For the low score detection boxes, we utilize their similarities with tracklets to recover true objects and filter out the background detections. When applied to 9 different state-of-the-art trackers, our method achieves consistent improvement on IDF1 score ranging from 1 to 10 points. To put forwards the state-of-the-art performance of MOT, we design a simple and strong tracker, named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU. ByteTrack also achieves state-of-the-art performance on MOT20, HiEve and BDD100K tracking benchmarks. The source code, pre-trained models with deploy versions and tutorials of applying to other trackers are released at https://github. com/ifzhang/ByteTrack.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] A METHOD FOR JOINT DETECTION AND RE-IDENTIFICATION IN MULTI-OBJECT TRACKING
    Huang, L.
    Shi, X.
    Xiang, J.
    NEURAL NETWORK WORLD, 2022, 32 (06) : 285 - 300
  • [42] Multi-object tracking with robust object regression and association
    Li, Yi-Fan
    Ji, Hong-Bing
    Chen, Xi
    Lai, Yu-Kun
    Yang, Yong-Liang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 227
  • [43] Joint Detection and Association for End-to-End Multi-object Tracking
    Ye Li
    Xiaoyu Luo
    Junyu Shi
    Xinzhong Wang
    Guangqiang Yin
    Zhiguo Wang
    Neural Processing Letters, 2023, 55 : 11823 - 11844
  • [44] Spatio-Temporal Correlation Graph for Association Enhancement in Multi-object Tracking
    Zhong, Zhijie
    Sheng, Hao
    Zhang, Yang
    Wu, Yubin
    Chen, Jiahui
    Ke, Wei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 394 - 405
  • [45] MobileNet-JDE: a lightweight multi-object tracking model for embedded systems
    Tsai, Chi-Yi
    Su, Yu-Kai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (07) : 9915 - 9937
  • [46] Adaptive δ-Generalized Labeled Multi-Bernoulli Filter for Multi-Object Detection and Tracking
    Liu, Zong-Xiang
    Gan, Jie
    Li, Jin-Song
    Wu, Mian
    IEEE ACCESS, 2021, 9 : 2100 - 2109
  • [47] Online Multi-object Tracking Using Single Object Tracker and Markov Clustering
    Zhu, Jiao
    Zhang, Shanshan
    Yang, Jian
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 555 - 567
  • [48] Retail Traffic-Flow Analysis Using a Fast Multi-object Detection and Tracking System
    Cobos, Richard
    Hernandez, Jefferson
    Abad, Andres G.
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2019, 2019, 1096 : 29 - 39
  • [49] Enhancing the association in multi-object tracking via neighbor graph
    Liang, Tianyi
    Lan, Long
    Zhang, Xiang
    Peng, Xindong
    Luo, Zhigang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (11) : 6713 - 6730
  • [50] LTTrack: Rethinking the Tracking Framework for Long-Term Multi-Object Tracking
    Lin, Jiaping
    Liang, Gang
    Zhang, Rongchuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9866 - 9881