Leaf-like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices

被引:44
作者
Guo, Ziyang
Wang, Jie
Wang, Fei
Zhou, DanDan
Xia, Yongyao [1 ]
Wang, Yonggang
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene oxide; carbon nanotubes (CNTs); Li-O-2; batteries; li-ion batteries; supercapacitors; PERFORMANCE; BATTERY; FILMS; TRANSPARENT; REDUCTION;
D O I
10.1002/adfm.201300130
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide (GO) has recently attracted a great deal of attention because of its heterogeneous chemical and electronic structures and its consequent exhibition of a wide range of potential applications, such as plastic electronics, optical materials, solar cells, and biosensors. However, its insulating nature also limits its application in some electronic and energy storage devices. In order to further widen the applications of GO, it is necessary to keep its inherent characteristics while improving its conductivity. Here, a novel leaf-like GO with a carbon nanotube (CNT) midrib is developed using vapor growth carbon fiber (VGCF) through the conventional Hummers method. The CNT midrib provides a natural electron diffusion path for the leaf-like GO, and therefore, this leaf-like GO with a CNT midrib displays excellent performance when applied in energy storage devices, including Li-O-2 batteries, Li-ion batteries, and supercapacitors.
引用
收藏
页码:4840 / 4846
页数:7
相关论文
共 39 条
[1]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[6]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[9]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[10]   Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies [J].
Ganguly, Abhijit ;
Sharma, Surbhi ;
Papakonstantinou, Pagona ;
Hamilton, Jeremy .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (34) :17009-17019