A note on weighted FOM and GMRES for solving nonsymmetric linear systems

被引:7
作者
Cao, ZH [1 ]
Yu, XY
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
nonsymmetric linear systems; sparse matrix; iterative methods; preconditioning; Krylov subspaces; Arnoldi; FOM; GMRES;
D O I
10.1016/S0096-3003(03)00373-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently Essai [Numer. Algorithm 18 (1998) 277-292] presented two new methods called WFOM and WGMRES for solving nonsymmetric linear systems. In this note we first point out a scaling invariant property of these methods, then we discuss the performance of the preconditioned weighted FOM and GMRES. Experimental results are presented to show that, contrast to WFOM and WGMRES, the preconditioned weighed FOM and GMRES have not so good performance compared to preconditioned FOM(m) and preconditioned GMRES(m). (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 4 条
[1]   A THEORETICAL COMPARISON OF THE ARNOLDI AND GMRES ALGORITHMS [J].
BROWN, PN .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :58-78
[2]   Weighted FOM and GMRES for solving nonsymmetric linear systems [J].
Essai, A .
NUMERICAL ALGORITHMS, 1998, 18 (3-4) :277-292
[3]  
MEIJERINK JA, 1977, MATH COMPUT, V13, P631
[4]  
Saad Y., 1996, Iterative Methods for Sparse Linear Systems