Finite element error analysis of surface Stokes equations in stream function formulation

被引:10
作者
Brandner, Philip [1 ]
Reusken, Arnold [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
关键词
Surface Stokes; stream function formulation; error analysis; TraceFEM; NAVIER-STOKES; FLOW; INTERFACE; DYNAMICS; MOTION; PDES;
D O I
10.1051/m2an/2020044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a surface Stokes problem in stream function formulation on a simply connected oriented surface Gamma subset of Double-struck capital R(3)without boundary. This formulation leads to a coupled system of two second order scalar surface partial differential equations (for the stream function and an auxiliary variable). To this coupled system a trace finite element discretization method is applied. The main topic of the paper is an error analysis of this discretization method, resulting in optimal order discretization error bounds. The analysis applies to the surface finite element method of Dziuk-Elliott, too. We also investigate methods for reconstructing velocity and pressure from the stream function approximation. Results of numerical experiments are included.
引用
收藏
页码:2069 / 2097
页数:29
相关论文
共 46 条
[1]  
[Anonymous], 2013, PEDIAT BLOOD CANC S1, V60, pS1
[2]  
[Anonymous], 2020, NGSXFEM
[3]  
[Anonymous], 2020, HDB NUMERICAL ANAL
[4]  
[Anonymous], 2017, KIDNEY INT S113
[5]   Lagrangian Navier-Stokes diffusions on manifolds: Variational principle and stability [J].
Arnaudon, Marc ;
Cruzeiro, Ana Bela .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (08) :857-881
[6]  
Arroyo M, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.031915
[7]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[8]   A stable numerical method for the dynamics of fluidic membranes [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
NUMERISCHE MATHEMATIK, 2016, 134 (04) :783-822
[9]  
Bonito A., 2019, ARXIV190811460
[10]  
Brenner H., 2013, INTERFACIAL TRANSPOR