Modified Smooth Variable Structure Filter for Radar Target Tracking

被引:0
作者
Li, Yaowen [1 ]
He, You [1 ,2 ]
Li, Gang [1 ]
Liu, Yu [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Naval Aviat Univ, Res Inst Informat Fus, Yantai, Shandong, Peoples R China
来源
2019 INTERNATIONAL RADAR CONFERENCE (RADAR2019) | 2019年
基金
中国国家自然科学基金;
关键词
Radar Target Tracking; Smooth Variable Structure Filter; Model Uncertainty; Chattering Suppression; KALMAN; SVSF;
D O I
10.1109/RADAR41533.2019.171325
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Smooth Variable Structure Filter (SVSF) is an effective method for radar target tracking and capable of providing robust target state estimation under model uncertainty. The traditional SVSF utilizing sign function or saturation function as the switching function in the correction gain suffers from the cut-off switching operations and the imprecise correction gain when the uncertainty rises unexpectedly. Therefore, the undesired chattering phenomenon occurs and the posteriori estimation error of the target velocity and acceleration greatly increases. In this paper, a modified form of SVSF using the hyperbolic tangent function as the "soft" switching principle is proposed to suppress the chattering phenomenon. The proposed method, referred to as the Tanh-SVSF, improves the tracking accuracy without increasing any computational burden. Simulation results demonstrate the advantage of the proposed Tanh-SVSF over traditional methods in terms of the accuracy of target motion state estimation.
引用
收藏
页码:707 / 712
页数:6
相关论文
共 15 条
[1]   A nonlinear second-order filtering strategy for state estimation of uncertain systems [J].
Afshari, Flamed H. ;
Gadsden, S. Andrew ;
Habibi, Saeid .
SIGNAL PROCESSING, 2019, 155 :182-192
[2]   Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter [J].
Al-Shabi, M. ;
Gadsden, S. A. ;
Habibi, S. R. .
SIGNAL PROCESSING, 2013, 93 (02) :420-431
[3]  
[Anonymous], 2011, THESIS
[4]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[5]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[6]   Target Tracking Formulation of the SVSF With Data Association Techniques [J].
Attari, Mina ;
Habibi, Saeid ;
Gadsden, Stephen Andrew .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (01) :12-25
[7]   An SVSF-Based Generalized Robust Strategy for Target Tracking in Clutter [J].
Attari, Mina ;
Luo, Zhongzhen ;
Habibi, Saeid .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (05) :1381-1392
[8]  
Chang CB, 2016, MIT LINCOLN LAB, P1
[9]   A New Robust Filtering Strategy for Linear Systems [J].
Gadsden, S. A. ;
Habibi, S. R. .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (01)
[10]  
Gadsden S. A., 2015, P ASME INT MECH EN A, V4A