Quasi-Banach modulation spaces and localization operators on locally compact abelian groups

被引:3
作者
Bastianoni, Federico [1 ]
Cordero, Elena [2 ]
机构
[1] Politecn Co Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Time-frequency analysis; Locally compact abelian groups; Localization operators; Short-time Fourier transform; Quasi-Banach spaces; Modulation spaces; Wiener amalgam spaces; TIME-FREQUENCY ANALYSIS; PSEUDODIFFERENTIAL-OPERATORS; COHENS CLASS; DECOMPOSITION; DISTRIBUTIONS; CONTINUITY; CALCULUS; FRAMES;
D O I
10.1007/s43037-022-00205-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new quasi-Banach modulation spaces on locally compact abelian groups which coincide with the classical ones in the Banach setting and prove their main properties. Then, we study Gabor frames on quasi-lattices, significantly extending the original theory introduced by Grochenig and Strohmer. These issues are the key tools in showing boundedness results for Kohn-Nirenberg and localization operators on modulation spaces and studying their eigenfunctions' properties. In particular, the results in the Euclidean space are recaptured.
引用
收藏
页数:71
相关论文
共 65 条
[1]   Lp-Lq multipliers on locally compact groups [J].
Akylzhanov, Rauan ;
Ruzhansky, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
[2]  
[Anonymous], 1972, Theta Functions, DOI DOI 10.1007/978-3-642-65315-5
[3]  
[Anonymous], 2000, LONDON MATH SOC MONO
[4]   Subexponential decay and regularity estimates for eigenfunctions of localization operators [J].
Bastianoni, Federico ;
Teofanov, Nenad .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (01)
[5]   Decay and smoothness for eigenfunctions of localization operators [J].
Bastianoni, Federico ;
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
[6]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[7]   A Primer on Coorbit Theory [J].
Berge, Eirik .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
[8]   Atomic decomposition via projective group representations [J].
Christensen, O .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) :1289-1312
[9]  
Christensen O, 2016, An Introduction to Frames and Riesz Bases, V1st, DOI 10.1007/978-0-8176-8224-8
[10]  
CLAASEN TACM, 1980, PHILIPS J RES, V35, P217