Fuzzy clustering algorithm for latent class model

被引:4
|
作者
Lin, CT [1 ]
Chen, CB
Wu, WH
机构
[1] Ming Chuan Univ, Grad Sch Management, Taipei, Taiwan
[2] Natl Dong Hwa Univ, Dept Int Business, Hualien, Taiwan
[3] Yuanpei Univ Sci & Technol, Dept Healthcare Management, Hsinchu, Taiwan
关键词
fuzzy clustering; latent class model; EM algorithm; maximum penalized likelihood; penalty fuzzy c-means;
D O I
10.1023/B:STCO.0000039479.56180.d5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The expectation maximization (EM) algorithm is a widely used parameter approach for estimating the parameters of multivariate multinomial mixtures in a latent class model. However, this approach has unsatisfactory computing efficiency. This study proposes a fuzzy clustering algorithm (FCA) based on both the maximum penalized likelihood (MPL) for the latent class model and the modified penalty fuzzy c-means (PFCM) for normal mixtures. Numerical examples confirm that the FCA-MPL algorithm is more efficient (that is, requires fewer iterations) and more computationally effective (measured by the approximate relative ratio of accurate classification) than the EM algorithm.
引用
收藏
页码:299 / 310
页数:12
相关论文
共 50 条
  • [21] A hybrid algorithm for fuzzy clustering
    Che, Z. H.
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2012, 6 (01) : 50 - 67
  • [22] A Fuzzy Paradigmatic Clustering Algorithm
    Amirjavid, Farzad
    Barak, Sasan
    Nemati, Hamidreza
    IFAC PAPERSONLINE, 2019, 52 (13): : 2360 - 2365
  • [23] Another fuzzy clustering algorithm
    Cherkassky, V
    Lee, Y
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 518 - 521
  • [24] Genetic algorithm for fuzzy clustering
    Zhao, LH
    Tsujimura, Y
    Gen, M
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 716 - 719
  • [25] Parameter setting for evolutionary latent class clustering
    Tessier, Damien
    Schoenauer, Marc
    Biernacki, Christophe
    Celeux, Gilles
    Govaert, Gerard
    Advances in Computation and Intelligence, Proceedings, 2007, 4683 : 472 - 484
  • [26] TS Fuzzy Model Identification by a Novel Objective Function Based Fuzzy Clustering Algorithm
    Dam, Tanmoy
    Deb, Alok Kanti
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 41 - 47
  • [27] Novel Fuzzy Clustering Algorithm for Fuzzy Data
    Agarwal, Vijyant
    2015 EIGHTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2015, : 155 - 161
  • [28] A modified clustering algorithm for fuzzy modeling using fuzzy C-regression model
    Zhao, Ni
    Sun, Fu-Chun
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 140 - +
  • [29] Fuzzy Distance Measure and Fuzzy Clustering Algorithm
    Beg, Ismat
    Rashid, Tabasam
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2015, 18 (05) : 471 - 492
  • [30] Collaborative Filtering Recommendation Algorithm Optimization Based on Latent Factor Model Clustering
    Wang, Erxin
    Yao, Wenbin
    Wang, Dongbin
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,