Fuzzy clustering algorithm for latent class model

被引:4
|
作者
Lin, CT [1 ]
Chen, CB
Wu, WH
机构
[1] Ming Chuan Univ, Grad Sch Management, Taipei, Taiwan
[2] Natl Dong Hwa Univ, Dept Int Business, Hualien, Taiwan
[3] Yuanpei Univ Sci & Technol, Dept Healthcare Management, Hsinchu, Taiwan
关键词
fuzzy clustering; latent class model; EM algorithm; maximum penalized likelihood; penalty fuzzy c-means;
D O I
10.1023/B:STCO.0000039479.56180.d5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The expectation maximization (EM) algorithm is a widely used parameter approach for estimating the parameters of multivariate multinomial mixtures in a latent class model. However, this approach has unsatisfactory computing efficiency. This study proposes a fuzzy clustering algorithm (FCA) based on both the maximum penalized likelihood (MPL) for the latent class model and the modified penalty fuzzy c-means (PFCM) for normal mixtures. Numerical examples confirm that the FCA-MPL algorithm is more efficient (that is, requires fewer iterations) and more computationally effective (measured by the approximate relative ratio of accurate classification) than the EM algorithm.
引用
收藏
页码:299 / 310
页数:12
相关论文
共 50 条
  • [1] Fuzzy clustering algorithm for latent class model
    Chin-Tsai Lin
    Chie-Bein Chen
    Wen-Hsiang Wu
    Statistics and Computing, 2004, 14 : 299 - 310
  • [2] Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering
    ter Braak, Cajo J. F.
    Kourmpetis, Yiannis
    Kiers, Henk A. L.
    Bink, Marco C. A. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) : 3183 - 3193
  • [3] A clustering algorithm for fuzzy model identification
    Chen, JQ
    Xi, YG
    Zhang, ZJ
    FUZZY SETS AND SYSTEMS, 1998, 98 (03) : 319 - 329
  • [4] Estimation of parameters in latent class models using fuzzy clustering algorithms
    Yang, MS
    Yu, NY
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 160 (02) : 515 - 531
  • [5] A latent class model with fuzzy segmentation and weighted variables
    Ishaq, Robert
    Bekhor, Shlomo
    Shiftan, Yoram
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2014, 10 (10) : 878 - 893
  • [6] Fuzzy color model and clustering algorithm for color clustering problem
    Kim, Dae-Won
    Lee, Kwang H.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2002, 1 : 1 - 10
  • [7] An algorithm to model paradigm shifting in fuzzy clustering
    Masulli, F
    Rovetta, S
    NEURAL NETS, 2003, 2859 : 70 - 76
  • [8] A fuzzy clustering algorithm enhancing local model interpretability
    J. L. Díez
    J. L. Navarro
    A. Sala
    Soft Computing, 2007, 11 : 973 - 983
  • [9] A fuzzy clustering algorithm enhancing local model interpretability
    Diez, J. L.
    Navarro, J. L.
    Sala, A.
    SOFT COMPUTING, 2007, 11 (10) : 973 - 983
  • [10] A fuzzy clustering algorithm based on hybrid surrogate model
    Shi, Maolin
    Wang, Zihao
    Xu, Lizhang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 1963 - 1976