High solar cycle spectral variations inconsistent with stratospheric ozone observations

被引:38
作者
Ball, W. T. [1 ]
Haigh, J. D. [2 ]
Rozanov, E. V. [1 ,3 ]
Kuchar, A. [3 ,4 ]
Sukhodolov, T. [1 ,3 ]
Tummon, F. [3 ]
Shapiro, A. V. [1 ]
Schmutz, W. [1 ]
机构
[1] Phys Meteorol Observatorium Davos World Radiat Ct, Dorfstr 33, CH-7260 Davos, Switzerland
[2] Univ London Imperial Coll Sci Technol & Med, Grantham Inst Climate Change & Environm, South Kensington Campus, London SW7 2AZ, England
[3] Swiss Fed Inst Technol Zurich, CHN, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland
[4] Charles Univ Prague, Dept Atmospher Phys, Fac Math & Phys, V Holesovickach 2, CR-18000 Prague 8, Czech Republic
基金
瑞士国家科学基金会;
关键词
IRRADIANCE; CLIMATE; VARIABILITY; SORCE; RECONSTRUCTION; CIRCULATION; REANALYSES; MODELS; IMPACT;
D O I
10.1038/NGEO2640
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Solar variability can influence surface climate, for example by affecting the mid-to-high-latitude surface pressure gradient associated with the North Atlantic Oscillation(1). One key mechanism behind such an influence is the absorption of solar ultraviolet (UV) radiation by ozone in the tropical stratosphere, a process that modifies temperature and wind patterns and hence wave propagation and atmospheric circulation(2-5). The amplitude of UV variability is uncertain, yet it directly affects the magnitude of the climate response(6): observations from the SOlar Radiation and Climate Experiment (SORCE) satellite(7) show broadband changes up to three times larger than previous measurements(8,9). Here we present estimates of the stratospheric ozone variability during the solar cycle. Specifically, we estimate the photolytic response of stratospheric ozone to changes in spectral solar irradiance by calculating the difference between a reference chemistry-climate model simulation of ozone variability driven only by transport (with no changes in solar irradiance) and observations of ozone concentrations. Subtracting the reference from simulations with time-varying irradiance, we can evaluate different data sets of measured and modelled spectral irradiance. We find that at altitudes above pressure levels of 5 hPa, the ozone response to solar variability simulated using the SORCE spectral solar irradiance data are inconsistent with the observations.
引用
收藏
页码:206 / U129
页数:6
相关论文
共 41 条
  • [1] Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979-2012
    Abalos, Marta
    Legras, Bernard
    Ploeger, Felix
    Randel, William J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (15) : 7534 - 7554
  • [2] [Anonymous], 1993, INTRO BOOTSTRAP
  • [3] Coupled chemistry climate model simulations of the solar cycle in ozone and temperature
    Austin, J.
    Tourpali, K.
    Rozanov, E.
    Akiyoshi, H.
    Bekki, S.
    Bodeker, G.
    Bruehl, C.
    Butchart, N.
    Chipperfield, M.
    Deushi, M.
    Fomichev, V. I.
    Giorgetta, M. A.
    Gray, L.
    Kodera, K.
    Lott, F.
    Manzini, E.
    Marsh, D.
    Matthes, K.
    Nagashima, T.
    Shibata, K.
    Stolarski, R. S.
    Struthers, H.
    Tian, W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D11)
  • [4] Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model
    Ball, W. T.
    Unruh, Y. C.
    Krivova, N. A.
    Solanki, S.
    Harder, J. W.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 530
  • [5] Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference
    Ball, William T.
    Mortlock, Daniel J.
    Egerton, Jack S.
    Haigh, Joanna D.
    [J]. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2014, 4
  • [6] A New SATIRE-S Spectral Solar Irradiance Reconstruction for Solar Cycles 21-23 and Its Implications for Stratospheric Ozone
    Ball, William T.
    Krivova, Natalie A.
    Unruh, Yvonne C.
    Haigh, Joanna D.
    Solanki, Sami K.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (11) : 4086 - 4101
  • [7] On the detection of the solar signal in the tropical stratosphere
    Chiodo, G.
    Marsh, D. R.
    Garcia-Herrera, R.
    Calvo, N.
    Garcia, J. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (11) : 5251 - 5269
  • [8] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [9] Recent variability of the solar spectral irradiance and its impact on climate modelling
    Ermolli, I.
    Matthes, K.
    de Wit, T. Dudok
    Krivova, N. A.
    Tourpali, K.
    Weber, M.
    Unruh, Y. C.
    Gray, L.
    Langematz, U.
    Pilewskie, P.
    Rozanov, E.
    Schmutz, W.
    Shapiro, A.
    Solanki, S. K.
    Woods, T. N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (08) : 3945 - 3977
  • [10] Eyring V., 2013, SPARC Newsletter, V40, P48