Evaluation of Resting-State Magnetoencephalogram Complexity in Alzheimer's Disease with Multivariate Multiscale Permutation and Sample Entropies

被引:0
|
作者
Azami, Hamed [1 ]
Smith, Keith [1 ,2 ]
Fernandez, Alberto [3 ,4 ,5 ,6 ]
Escudero, Javier [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Digital Commun, Kings Bldg, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Edinburgh, Psychol & Language Sci, Alzheimer Scotland Dementia Res Ctr, Edinburgh EH8 9JZ, Midlothian, Scotland
[3] Univ Complutense Madrid, Dept Psiquiatria Psicol Med, Madrid, Spain
[4] Univ Politecn Madrid, Ctr Tecnol Biomed, Lab Neurociencia Cognit & Computac, Madrid, Spain
[5] Univ Complutense Madrid, Madrid, Spain
[6] Inst Invest Sanit San Carlos IdSSC, San Rafael, Argentina
来源
2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2015年
关键词
DIAGNOSIS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is one of the fastest growing neurological diseases in the world. We evaluate multivariate multiscale sample entropy (mvMSE) and multivariate multiscale permutation entropy (mvMPE) approaches to distinguish resting-state magnetoencephalogram (MEG) signals of 36 AD patients from those of 26 normal controls. We also discuss about choosing the appropriate embedding dimension value as an effective parameter for mvMPE and MPE for the first time. The results illustrate that both the mvMPE and mvMSE can be useful in the diagnosis of AD, although with different running times and abilities. In addition, our findings show that the MEG complexity analysis performed on deeper time scales by mvMPE and mvMSE may be a useful tool to characterize AD. In most scale factors, the average of the mvMPE and mvMSE values of AD patients are lower than those of controls.
引用
收藏
页码:7422 / 7425
页数:4
相关论文
共 50 条
  • [41] Temporal dynamic changes of intrinsic brain activity in Alzheimer's disease and mild cognitive impairment patients: a resting-state functional magnetic resonance imaging study
    Li, Ting
    Liao, Zhengluan
    Mao, Yanping
    Hu, Jiaojiao
    Le, Dansheng
    Pei, Yangliu
    Sun, Wangdi
    Lin, Jixin
    Qiu, Yaju
    Zhu, Junpeng
    Chen, Yan
    Qi, Chang
    Ye, Xiangming
    Su, Heng
    Yu, Enyan
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (01)
  • [42] Identification of Resting and Active State EEG Features of Alzheimer's Disease using Discrete Wavelet Transform
    Ghorbanian, Parham
    Devilbiss, David M.
    Verma, Ajay
    Bernstein, Allan
    Hess, Terry
    Simon, Adam J.
    Ashrafiuon, Hashem
    ANNALS OF BIOMEDICAL ENGINEERING, 2013, 41 (06) : 1243 - 1257
  • [43] Evaluating Effects of Resting-State Electroencephalography Data Pre-Processing on a Machine Learning Task for Parkinson's Disease
    Vlieger, Robin
    Daskalaki, Elena
    Apthorp, Deborah
    Lueck, Christian J.
    Suominen, Hanna
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 1480 - 1481
  • [44] Changes in resting-state directed connectivity in cortico-subcortical networks correlate with cognitive function in Parkinson's disease
    Boon, Lennard I.
    Hillebrand, Arjan
    Dubbelink, Kim T. E. Olde
    Stam, Cornelis J.
    Berendse, Henk W.
    CLINICAL NEUROPHYSIOLOGY, 2017, 128 (07) : 1319 - 1326
  • [45] Machine Learning for Detecting Parkinson's Disease by Resting-State Functional Magnetic Resonance Imaging: A Multicenter Radiomics Analysis
    Shi, Dafa
    Zhang, Haoran
    Wang, Guangsong
    Wang, Siyuan
    Yao, Xiang
    Li, Yanfei
    Guo, Qiu
    Zheng, Shuang
    Ren, Ke
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [46] Health State Values for Use in the Economic Evaluation of Treatments for Alzheimer's Disease
    Shearer, James
    Green, Colin
    Ritchie, Craig W.
    Zajicek, John P.
    DRUGS & AGING, 2012, 29 (01) : 31 - 43
  • [47] Multi-feature fusion learning for Alzheimer's disease prediction using EEG signals in resting state
    Chen, Yonglin
    Wang, Huabin
    Zhang, Dailei
    Zhang, Liping
    Tao, Liang
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [48] Machine-learning identifies Parkinson's disease patients based on resting-state between-network functional connectivity
    Rubbert, Christian
    Mathys, Christian
    Jockwitz, Christiane
    Hartmann, Christian J.
    Eickhoff, Simon B.
    Hoffstaedter, Felix
    Caspers, Svenja
    Eickhoff, Claudia R.
    Sigl, Benjamin
    Teichert, Nikolas A.
    Suedmeyer, Martin
    Turowski, Bernd
    Schnitzler, Alfons
    Caspers, Julian
    BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1101):
  • [49] Distinct manifestation of cognitive deficits associate with different resting-state network disruptions in non-demented patients with Parkinson's disease
    Kawabata, Kazuya
    Watanabe, Hirohisa
    Hara, Kazuhiro
    Bagarinao, Epifanio
    Yoneyama, Noritaka
    Ogura, Aya
    Imai, Kazunori
    Masuda, Michihito
    Yokoi, Takamasa
    Ohdake, Reiko
    Tanaka, Yasuhiro
    Tsuboi, Takashi
    Nakamura, Tomohiko
    Hirayama, Masaaki
    Ito, Mizuki
    Atsuta, Naoki
    Maesawa, Satoshi
    Naganawa, Shinji
    Katsuno, Masahisa
    Sobue, Gen
    JOURNAL OF NEUROLOGY, 2018, 265 (03) : 688 - 700
  • [50] Parkinson's Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques
    Aljalal, Majid
    Aldosari, Saeed A.
    AlSharabi, Khalil
    Abdurraqeeb, Akram M.
    Alturki, Fahd A.
    DIAGNOSTICS, 2022, 12 (05)